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ABSTRACT 
 
RCTs are valuable tools whose use is spreading in economics and in other social sciences. They are seen as 
desirable aids in scientific discovery and for generating evidence for policy. Yet some of the enthusiasm for 
RCTs appears to be based on misunderstandings: that randomization provides a fair test by equalizing 
everything but the treatment and so allows a precise estimate of the treatment alone; that randomization 
is required to solve selection problems; that lack of blinding does little to compromise inference; and that 
statistical inference in RCTs is straightforward, because it requires only the comparison of two means. None 
of these statements is true. RCTs do indeed require minimal assumptions and can operate with little prior 
knowledge, an advantage when persuading distrustful audiences, but a crucial disadvantage for cumulative 
scientific progress, where randomization adds noise and undermines precision. The lack of connection 
between RCTs and other scientific knowledge makes it hard to use them outside of the exact context in 
which they are conducted. Yet, once they are seen as part of a cumulative program, they can play a role in 
building general knowledge and useful predictions, provided they are combined with other methods, 
including conceptual and theoretical development, to discover not “what works,” but why things work. 
Unless we are prepared to make assumptions, and to stand on what we know, making statements that will 
be incredible to some, all the credibility of RCTs is for naught.  
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Introduction  
 
Randomized trials are currently much used in economics and are widely considered to be a desirable 

method of empirical analysis and discovery. There is a long history of such trials in the subject. There were 

four large federally sponsored negative income tax trials in the 1960s and 1970s. In the mid-1970s, there 

was a famous, and still frequently cited, trial on health insurance, the Rand health experiment.  There was 

then a period during which randomized controlled trials (RCTs) received less attention by academic 

economics; even so, randomized trials on welfare, social policy, labor markets, and education have 

continued since the mid-1970s, some with substantial involvement and discussion by academic economists, 

see Greenberg and Shroder (2004).  

Recent randomized trials in economic development have attracted attention, and the idea that 

such trials can discover “what works” has been widely adopted in economics, as well as in political science, 

education, and social policy. Among both researchers and the general public, RCTs are perceived to yield 

causal inferences and parameter estimates that are more credible than other empirical methods that do 

not involve the comparison of randomly selected treatment and control groups. RCTs are seen as largely 

exempt from many of the econometric problems that characterize observational studies. When RCTs are 

not feasible, researchers often mimic randomized designs by using observational data to construct two 

groups that, as far as possible, are identical and differ only in their exposure to treatment.  

The preference for randomized trials has spread beyond trialists to the general public and the 

media, which typically reports favorably on them. They are seen as accurate, objective, and largely 

independent of “expert” knowledge that is often regarded as manipulable, politically biased, or otherwise 

suspect. There are now “What Works” centers using and recommending RCTs in a huge range of areas of 

social concern across Europe and the Anglophone world, such as the US Department of Education’s What 

Works Clearing House, The Campbell Collaboration (parallel to the Cochrane Collaboration in health), the 

Scottish Intercollegiate Guidelines Network (SIGN), the US Department of Health and Human Services Child 

Welfare Information Gateway, the US Social and Behavioral Sciences Team, and others. The British 

government has established eight new (well-financed) What Works Centers similar to the National Institute 

for Health and Care Excellence (NICE), with more planned. They extend NICE’s evaluation of health 

treatment into aging, early intervention, education, crime, local economic growth, Scottish service delivery, 

poverty, and wellbeing. These centers see randomized controlled trials as their preferred tool. There is a 

widespread desire for careful evaluation—to support what is sometimes called the “audit society”—and 

everyone assents to the idea that policy should be based on evidence of effectiveness, for which 

randomized trials appear to be ideally suited. Trials are easily, if not very precisely, explained along the 

lines that random selection generates two otherwise identical groups, one treated and one not; results are 

easy to compute—all we need is the comparison of two averages; and unlike other methods, it seems to 
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require no specialized understanding of the subject matter. It seems a truly general tool that (nominally) 

works in the same way in agriculture, medicine, sociology, economics, politics, and education.  It is 

supposed to require no prior knowledge, whether suspect or not, which is seen as a great advantage.  

In this paper, we present two sets of arguments, one on conducting RCTS and on how to interpret 

the results, and one on how to use the results once we have them. Although we do not care for the 

terms—for reasons that will become apparent—the two sections correspond roughly to internal and 

external validity. 

Randomized controlled trials are often useful, and have been important sources of empirical 

evidence for causal claims and evaluation of effectiveness in many fields. Yet many of the popular 

interpretations—not only among the general public, but also among trialists—are incomplete and 

sometimes misleading, and these misunderstandings can lead to unwarranted trust in the impregnability of 

results from RCTs, to a lack of understanding of their limitations, and to mistaken claims about how widely 

their results can be used. All these, in turn, can lead to flawed policy recommendations.  

Among the misunderstandings are the following: (a) randomization ensures a fair trial by ensuring 

that, at least with high probability, treatment and control groups differ only in the treatment; (b) RCTs 

provide not only unbiased estimates of average treatment effects, but also precise estimates; (c) 

randomization is necessary to solve the selection problem; (d) lack of blinding, which is common in social 

science experiments, does not seriously compromise inference; (e) statistical inference in RCTs, which 

requires only the simple comparison of means, is straightforward, so that standard significance tests are 

reliable.  

While many of the problems of RCTs are shared with observational studies, some are unique, for 

example the fact that randomizing itself can change outcomes independently of treatment. More generally, 

it is almost never the case that an RCT can be judged superior to a well-conducted observational study 

simply by virtue of being an RCT. The idea that all methods have their flaws, but RCTs always have fewest, is 

one of the deepest and mort pernicious misunderstandings. 

In the second part of the paper, we discuss the uses and limitations of results from RCTs for making 

policy. The non-parametric and theory-free nature of RCTs, which is arguably an advantage in estimation, is 

a serious disadvantage when we try to use the results outside of the context in which they were obtained. 

Much of the literature, in economic development and elsewhere, perhaps inspired by Campbell and 

Stanley’s (1963) famous “primacy of internal validity,” assumes that internal validity is enough to guarantee 

the usefulness of the estimates in different contexts. Without understanding RCTs within the context of the 

knowledge that we already possess about the world, much of it obtained by other methods, we do not 

know how to use trial results. But once the commitment has been made to seeing RCTs within this broader 

structure of knowledge and inference, and when they are designed to fit within it, they can play a useful 
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role in building general knowledge and policy predictions; for example, an RCT can be a good way of 

estimating a key policy magnitude. The broader context within which RCTs need to be set includes not only 

models of economic structure, but also the previous experience that policymakers have accumulated about 

local settings and implementation. Most importantly for economic development, the use of RCT results 

should be sensitive to what people want, both individually and collectively. RCTs should not become yet 

another technical fix that is imposed on people by bureaucrats or foreigners; RCT results need to be 

incorporated into a democratic process of public reasoning, Sen (2011). Greenberg, Shroder, and Onstott 

(1999) document that, even before the recent wave of RCTs in development, most RCTs in economics have 

been carried out by rich people on poor people, and the fact should make us especially sensitive to avoid 

charges of paternalism. 

 

Section 1: Interpreting the results of RCTs 

 

1.1 Prolog 

 

RCTs were first popularized by Fisher’s agricultural trials in the 1930s and are today often described by the 

Rubin counterfactual causal model, which itself traces back to Neyman in 1923, see Freedman (2006) for a 

description of the history: Each unit i (a person, a pupil, a school, an agricultural plot) is assumed to have 

two possible outcomes, Yio
 and Yi1

, the former occurring if there is no treatment at the time in question, 

the latter if the unit is treated. The difference between the two outcomes Yi1 -Yi0
 is the individual 

treatment effect, which we shall denote bi . Treatment effects are typically different for different units. No 

unit can be both treated and untreated at the same time, so only one or other of the outcomes occurs; the 

other is counterfactual so that individual treatment effects are in principle unobservable.  

We note parenthetically that while we use the counterfactual framework here, we do not endorse 

it, nor argue against other approaches that do not use it, such as the Cowles commission econometric 

framework where the causal relations are coded as structural equations, see also Pearl (2009.) Imbens and 

Wooldridge (2009, Introduction) provide an eloquent defense of the Rubin formulation, emphasizing the 

credibility that comes from a theory-free specification with unlimited heterogeneity in treatment effects. 

Heckman and Vytlacil (2007, Introduction) make an equally eloquent case against, noting that the 

treatments in RCTs are often unclearly specified and that the treatment effects are hard to link to invariant 

parameters that would be useful elsewhere.  

The basic theorem governing RCTs is a remarkable one. It states that the average treatment effect 

is the average outcome in the treatment group minus the average outcome in the control group. While we 

cannot observe the individual treatment effects, we can observe their mean. The estimate of the average 
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treatment effect (ATE) is simply the difference between the means in the two groups, and it has a standard 

error that can be estimated and used to make significance statements according to the statistical theory 

that applies to the difference of two means, on which more below in Section 1.3. The difference in means is 

an unbiased estimator of the mean treatment effect.  

The theorem is remarkable because it requires so few assumptions; no model is required, no 

assumptions about covariates are needed, the treatment effects can be heterogeneous, and nothing is 

assumed about the shapes of statistical distributions other than the statistical question of the existence of 

the mean of the counterfactual outcome values. In terms of one of our running themes, it requires no 

expert knowledge, or no acceptance of priors, expert or otherwise. The theorem also has its limitations; the 

proof uses the fact that the difference in two means is the mean of the individual differences, i.e. the 

treatment effects. This is not true for the median (the difference in two medians is not the median of the 

differences which is the median treatment effect). It also does not allow us to estimate any percentile of 

the distribution of treatment effects, or its variance. (Quantile estimates of treatment effects are not the 

quantiles of the distribution of treatment effects, but the differences in the quantiles of the two marginal 

distributions of treatments and controls; the two measures coincide if the experiment has no effect on 

ranks, an assumption that would be convenient but is hard to justify, at least in general.) All of these 

statistics can be of interest for policy but RCTs are not informative about them, or at least not without 

further assumptions, for example on the distribution of treatment effects, see Heckman, Smith, and 

Clements (1997), and much of the attraction of RCTs is the absence of such assumptions.   

The basic theorem tells us that the difference in means is an unbiased estimator of the average 

treatment effect but says nothing about the variance of this estimator. In general, a biased estimator that is 

typically closer to the truth will often be better than an unbiased estimator that is typically wide of the 

truth. There is nothing to say that a non-RCT estimator, in spite of bias, might not have a lower mean 

squared error (MSE), one measure of the distance of the estimate from the truth, or a lower value of a “loss 

function” that defines the loss to the experimenter of missing the target. 

 It is useful to think of the mean average treatment effect from an RCT in terms of sampling from a 

finite population, as when the Bureau of the Census estimates average income of the US population in 

2013. For the RCT, the population is the population of units whose average treatment effect is of interest; 

note the importance of defining the population of interest because, given the heterogeneity of treatment 

effects, the average treatment effect will vary across different populations, just as average incomes differ 

across different subpopulations of the US. Finite population sampling theory tells us how to get accurate 

estimates of means from samples; in the RCT case, the sample is the study sample, both treatments and 

controls. In principle, the study sample could be a random sample of the parent population of interest, in 

which case it is representative of it, but that is seldom the case. Because the estimate is population specific, 
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it is not (or need not be) thought of as the parameter of a super-population, or otherwise generalizable in 

any way. Average income in the US in 2013 may be of interest in its own right; but it will not be the same as 

average income in 2014, nor will it be the same as average income of whites, or of the populations of 

Wyoming or New York.  Exactly the same is true of the estimate of an average treatment effect; it applies 

to the study sample in which the trial was done, at the time when it was done, and its use outside of those 

confines, though often possible, requires argument and justification. Without such an argument, we cannot 

claim that an ATE is “the” mean treatment effect any more than that average income in the US in 2013 is 

“the” average income of the US in any other year. Of course, knowing average income in 2013 can be 

useful for making other calculations, such as an estimate of income in 2014, or of a subpopulation that we 

know is richer or poorer; the fact that an estimate does not universally generalize does not make it useless. 

We shall return to these issues in Section 2.  

 

1.2 Precision, balance, and randomization 

 

1.2.1 Precision and bias 

 

We should like our estimate of the average treatment effect to be as close to the truth as possible. One 

way to assess closeness is the mean square error (MSE), defined as:  

  MSE = E(
⌢
q -q )2    (1) 

where q  is the true average treatment effect, and  
⌢
q  is its estimate from a particular trial. The expectation 

is taken over repeated randomizations of treatments and controls using the same study population. It is 

also standard to rewrite (1) as: 

 
 
MSE = E (

⌢
q - E(

⌢
q )( )

2

+ E(
⌢
q )-q( )

2

= var(
⌢
q )+ bias(

⌢
q ,q)2   (2) 

so that mean square error is the sum of the variance of the estimator—which we typically know something 

about from the estimated standard error—and the square of the bias—which in the case of a(n ideal) 

randomized controlled trial is zero. The elementary, but crucial point is that, while it is certainly good that 

the bias is zero, that fact does nothing to make the distance from the truth as small as it might be, which is 

what we really care about. An unbiased estimator that is nearly always wide of the target is not as useful as 

one that is always near to it, even if, on average, it is off center. More generally, it will often be desirable to 

trade in some unbiasedness for greater precision. Experiments are often expensive, so we cannot always 

rely on large samples to bring the estimate close to the truth and resolve these issues for us. Much of this 

Section is concerned with how to design experiments to maximize precision. 
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Unbiasedness alone cannot therefore justify the often-expressed preference for RCTs over other 

estimators. The minimalist assumptions required for an RCT to be unbiased are an attraction although, as 

we shall see in this Section, this advantage usually comes at the cost of lowered precision and of difficulties 

in knowing how to use the result, as we shall see in Section 2. Yet there is an often expressed belief that 

RCTs are somehow guaranteed to be precise, simply because they are RCTs. Occasionally bias and precision 

are explicitly confused; the JPAL website, in its explanation of why it is good to randomize, says that RCTs 

“are generally considered the most rigorous and, all else equal, produce the most accurate (i.e. unbiased) 

results.” Shadish, Cook, and Campbell (2002, p. 276), in what is (rightly) considered one of the bibles of 

causal inference in social science, state without qualification that “randomized experiments provide a 

precise answer about whether a treatment worked” (p. 276) and “The randomized experiment is often the 

preferred method for obtaining a precise and statistically unbiased estimate of the effects of an 

intervention,” (p. 277) our italics.  

Contrast this with Cronbach et al (1980) who quotes Kendall’s (1957) pastiche of Longfellow, 

“Hiawatha designs an experiment,” where Hiawatha’s insistence on unbiasedness leads to his never hitting 

the target and to his eventual banishment.  

 

1.2.2 Balance and precision in a linear all-cause model 

 

A useful way to think about precision and what an RCT does and does not do is to use a schematic linear 

causal model of the form:  

 Yi = biTi + g jxijj=1

J

å   (3) 

where, as before, Yi
 is the outcome for unit i,  Ti

 is a dichotomous (1,0) treatment dummy indicating 

whether or not i is treated, and bi
 is the individual treatment effect of the treatment on i.  The x’s are the 

observed or unobserved other causes of the outcome, and we suppose that (3) captures all the causes of 

  
Y

i
. J may be very large. Because the heterogeneity of the individual treatment effects 

 
b

i
 is unrestricted, 

we allow the possibility that the treatment interacts with the x’s or other variables, so that the effects of T 

can depend on any other variables, and we shall have occasion to make this explicit below. An obvious and 

important example is when the treatment if effective only in the presence of a particular value of one of 

the x’s.  

We do not need i subscripts on the
  g 's  that control the effects of the other causes; if their effects 

differ across individuals, we include the interactions of individual characteristics with the original x’s as new 

x’s. Given that the x’s can be unobservable, this is not restrictive. Because the 
  b 's can depend on the x’s, 
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the effects of the x’s on the outcome can depend on 
  
T

i
,  or, equivalently, the effects of treatment can 

depend on covariates. 

In an experiment, with or without randomization, we can represent the treatment group as having 

Ti = 1,  and the control group as having Ti = 0. So when we subtract the average outcomes among the 

controls from the average outcomes among the treatments, we will get: 

 

  

Y
1

- Y
0

= b
1

+ g
j
(x ij

1

-
j=1

J

å x ij

0

) = b
1

+ (S
1

- S
0

)  (4) 

The first term on the far right hand side, which is the average treatment effect, is what we want, but the 

second term or error term, which is the sum of the net average balances of other causes across the two 

groups, will generally be non-zero—because of selection or many other reasons—and needs to be dealt 

with somehow. We get what we want when the means of all the other causes are identical in the two 

groups, or more precisely when the sum of their net differences   S
1

- S
0

 is zero; this is the case of perfect 

balance. With perfect balance, the difference between the two means is exactly equal to the average of the 

treatment effect among the treated, so that we have the ultimate precision and we know the answer 

exactly, at least in this linear case. 

 

1.2.3 Balancing acts: real and magical 

 

How do we get balance, or something close to it? What, exactly, is the role of randomization? In a 

laboratory experiment, where there is good background knowledge of the other causes, the experimenter 

has a good chance of controlling all of the other causes, aiming to ensure that the last term in (4) is close to 

zero. Failing such knowledge and control, an alternative is matching, frequently used in statistical, medical, 

and econometric work. For each treatment, a match is found that is as close as possible on all suspected 

causes, so that, once again, the last term in (4) can be kept small. Again, when we have a good idea of the 

causes, matching may also deliver a precise estimate. Of course, when there are important unknown or 

unobservable causes, neither laboratory control nor matching offers protection. 

 What does randomization do? Because the treatments and controls come from the same 

underlying distribution, randomization guarantees, by construction, that the last term on the right in (4) is 

zero in expectation at baseline (much can happen to disturb this beyond baseline). This is true whether or 

not the causes are observed. If the RCT is repeated many times on the same trial population, then the last 

term will be zero when averaged over an infinite number of (entirely hypothetical) trials. Of course, this 

does nothing to make it zero in any one trial where the difference in means will be equal to the average 

treatment effect among those treated plus a term that reflects the imbalance in the net effects of the other 
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causes. We do not know the size of this error term, and there is nothing in the randomization that limits its 

size; by chance, there can be one (or more) important excluded cause(s) that is very unequally distributed 

between treatment and controls. This imbalance will vary over replications of the trial, and its average size 

will ideally be captured by the standard error of the estimated ATE, which gives us some idea of how likely 

we are to be away from the truth. Getting the standard error and associated significance statements right 

are therefore of great importance.  

 Exactly what randomization does is frequently lost in the practical literature, and there is often a 

confusion between perfect control, on the one hand—as in a laboratory experiment or perfect matching 

with no unobservable causes—and control in expectation—which is what RCTs do. We suspect that at least 

some of the popular and professional enthusiasm for RCTs, as well as the belief that they are precise by 

construction, comes from misunderstandings about balance. These misunderstandings are not so much 

among the trialists who, when pressed, will give a correct account, but come from imprecise statements by 

trialists that are taken as gospel by the lay audience that the trialists are keen to reach.  

Such a misunderstanding is well captured by the following quote from the World Bank’s online 

manual on impact evaluation: 

“We can be very confident that our estimated average impact, given as the difference between the 

outcome under treatment (the mean outcome of the randomly assigned treatment group) and our 

estimate of the counterfactual (the mean outcome of the randomly assigned comparison group) 

constitute the true impact of the program, since by construction we have eliminated all observed 

and unobserved factors that might otherwise plausibly explain the difference in outcomes.”  

Gertler et al (2011) (our italics.) 

This statement confuses actual balance in any single trial with balance in expectation over many entirely 

hypothetical trials. If the statement above were true, and if all factors were indeed controlled (and no 

imbalances were introduced post randomization), the difference would be an exact measure of the average 

treatment effect, at least in the absence of measurement error. We should not only be confident of our 

estimate; we would know the truth, as the quote says.  

 A similar quote comes from John List, one of the most imaginative and successful scholars who use 

RCTs: 

“complications that are difficult to understand and control represent key reasons to conduct 

experiments, not a point of skepticism. This is because randomization acts as an instrumental 

variable, balancing unobservables across control and treatment groups.”  

Al-Ubaydli and List (2013) (italics in the original.) 
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And from Dean Karlan, founder and President of Yale’s Innovations for Poverty Action, which runs 

development RCTs around the world: 

“As in medical trials, we isolate the impact of an intervention by randomly assigning subjects to 

treatments and control groups. This makes it so that all those other factors which could influence 

the outcome are present in treatment and control, and thus any difference in outcome can be 

confidently attributed to the intervention.”  

Karlan, Goldberg and Copestake (2009) 

And from the medical literature, from a distinguished psychiatrist who is deeply skeptical of RCTs: 

“The beauty of a randomized trial is that the researcher does not need to understand all the factors 

that influence outcomes. Say that an undiscovered genetic variation makes certain people 

unresponsive to medication. The randomizing process will ensure—or make it highly probable—

that the arms of the trial contain equal numbers of subjects with that variation. The result will be a 

fair test.” (Kramer, 2016, p. 18) 

Claims are even made that RCTs reveal knowledge without possibility of error. Judy Gueron, the 

long-time president of MDRC, which has been running RCTs on US government policy for 45 years, 

asks why federal and state officials were prepared to support randomization in spite of frequent 

difficulties and in spite of the availability of other methods, and concludes that it was because 

“they wanted to learn the truth,” Gueron and Rolston (2013, 429). There are many statements of 

the form “We know that [project X] worked because it was evaluated with a randomized trial,”  

Dynarski (2015). 

Many writers are more cautious, and modify statements about treatment and control groups being 

identical with terms such as “statistically identical,” “reasonably similar” or do not differ “systematically.” 

And we have no doubt that all of the authors quoted above understand the need for these qualifications. 

But to the uninformed reader, the qualified statements are unlikely to be differentiated from the 

unqualified statements quoted above. Nor is it always clear what some of these terms mean. For example, 

if two people are selected at random from a population, and it so happens that one is female and one 

male, in what sense they are statistically identical? While it is true that they were randomly selected from 

the same parent distribution, which provides the basis for inference, the calculation of standard errors, and 

significance statements, it does nothing to help with balance or precision in any given trial.  

 

1.2.4 Sample size and statistical inference in unbalanced trials 

 

Is a single trial more likely to be balanced, and thus more precise, when the sample size is large? Indeed, as 

the sample size tends to infinity, the means of the x’s in the treatment and control groups will become 
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arbitrarily close. Yet this is of little help in finite samples as Fisher (1926) noted: “Most experimenters on 

carrying out a random assignment will be shocked to find how far from equally the plots distribute 

themselves,” quoted in Morgan and Rubin (2012). Even with very large sample sizes, if there are a large 

number of causes, balance on each cause may be infeasible. Vandenbroucke (2004) notes that there are 

three million base pairs in the human genome, many or all of which could be relevant prognostic factors for 

the biological outcome that we are seeking to influence.  

However, as (4) makes clear, we do not need balance on all causes, only on their net effect, the 

term   S
1 - S 0 which does not require balance on each cause individually. Yet there is no guarantee that 

even the net effect will be small. For example, there may only be one omitted unobserved cause whose 

effect is large, one single base pair say, so that if that one cause is unbalanced across treatments and 

controls, that there is individual or even net balance on other less important causes is not going to help.  

Statements about large samples guaranteeing balance are not useful without guidelines about how 

large is large enough, and such statements cannot be made without knowledge of other causes and how 

they affect outcomes. 

 A simple case illustrates. Suppose that there is one hidden cause in (3), a binary variable x that is 

unity with probability p and 0 otherwise. With n controls and n treatments, the difference in fractions with 

x=1 in the two groups has mean 0 and variance 
  1/ np(1- p). With n=100 and p=0.5, the standard error 

around 0 is 0.2 so that, if this unobserved confounder has a large effect on the outcome, the imbalance 

could easily mask the effect of treatment, or be mistaken as evidence for the effectiveness of a truly 

ineffective treatment. 

Lack of balance in the above example or in the net effect of either observables or non-observables 

in (4) does not compromise the inference in an RCT in the sense of obtaining a standard error for the 

unbiased ATE, see Senn (2013) for a particularly clear statement.  The randomization does not guarantee 

balance but it provides the basis for making probability statements about the various possible outcomes, 

which is also clear in the example in the previous paragraph. This was also Fisher’s argument for 

randomization. Senn writes “the probability calculation applied to a clinical trial automatically makes an 

allowance for the fact that the groups will almost certainly be unbalanced.” (italics in the original.) If the 

design is such that, even with perfect randomization, successive replications tend to generate large 

imbalances, the resulting imprecision of the ATE will show up in its standard error. Of course, the 

usefulness of this requires that the calculated standard errors permit correct significance statements, 

which, as we shall see in the next subsection, is often far from straightforward. In the example above, an 

extreme, but entirely possible, case occurs when, by chance, the unobserved confounder is perfectly 

correlated with the treatment; unless there are actual replications, the false certainty that such an 

experiment provides will be reinforced by false significance tests.  
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1.2.5 Testing for balance  

 

In practice, trialists in economics (and in some other disciplines) usually carry out a statistical test for 

balance after randomization but before analysis, presumably with the aim of taking some appropriate 

action if balance fails. The first table of the paper typically presents the sample means of observable 

covariates—the observable x’s in (3), which are either causes in their own right or interact with the 
  b 's—

for the control and treatment groups, together with their differences, and tests for whether or not they are 

significantly different from zero, either variable by variable, or jointly. These tests are appropriate if we are 

concerned that the random number generator might have failed (because we are drawing playing cards, 

rolling dice, or spinning bottle tops, though presumably not if the randomization is done by a random 

number generator, always supposing that there is such a thing as randomness, Singer and Pincus (1998)), or 

if we are worried that the randomization is undermined by non-blinded subjects or trialists systematically 

undermining the allocation. Otherwise, as the next paragraph shows, the test makes no sense and is not 

informative, which does not seem to stop it being routinely used.  

If we write m0  and m1 for the (vectors of) population means (i.e. the means over all possible 

randomizations) of the observed x’s in the control and treatment groups at the point of assignment, the 

null hypothesis is (presumably, as judged by the typical balance test) that the two vectors are identical, 

with the alternative being that they are not. But if the randomization has been correctly done, the null 

hypothesis is true by construction, see e.g. Altman (1985) and Senn (1994), which may help explain why it 

so rarely fails in practice. Indeed, although we cannot “test” it, we know that the null hypothesis is also true 

for the unobservable components of x. Note the contrast with the statements quoted above claiming that 

RCTs guarantee balance on causes across treatment and control groups. Those statements refer to balance 

of causes at the point of assignment in any single trial, which is not guaranteed by randomization, whereas 

the balance tests are about the balance of causes at the point of assignment in expectation over many 

trials, which is guaranteed by randomization. The confusion is perhaps understandable, but it is confusion 

nevertheless. Of course, it makes sense to look for balance between observed covariates using some more 

appropriate distance measure for example the normalized difference in means, Imbens and Wooldridge 

(2009, equation 3).  

 

1.2.6 Methods for balancing 

 

One procedure to improve balance is to adapt the design before randomization, for example by 

stratification. Fisher, who as the quote above illustrates, was well aware of the loss of precision from 
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randomization argued for “blocking” (stratification) in agricultural trials or for using Latin Squares, both of 

which restrict the amount of imbalance. Stratification, to be useful, requires some prior understanding of 

the factors that are likely to be important, and so it takes us away from the “no knowledge required,” or 

“no priors accepted” appeal of RCTs. But as Scriven (1974, 103) notes: “cause hunting, like lion hunting, is 

only likely to be successful if we have a considerable amount of relevant background knowledge,” or even 

more strongly, “no causes in, no causes out,” Cartwright (1994, Chapter 2). Stratification in RCTs, as in 

other forms of sampling, is a standard method for using background knowledge to increase the precision of 

an estimator. It has the further advantage that it allows for the exploration of different average treatment 

effects in different strata which can be useful in adapting or transporting the results to other locations, see 

Section 2. 

 Stratification is not possible when there are too many covariates, or if each has many values, so 

that there are more cells than can be filled given the sample size. An alternative is to re-randomize, 

repeating the randomization until the distance between the observed covariates is less than some 

predetermined criteria. Morgan and Rubin (2012) suggest the Mahalanobis D–statistic, and use Fisher’s 

randomization inference (to be discussed further below) to calculate standard errors that take the re-

randomization into account. An alternative, widely adapted in practice, is to adjust for covariates by 

running a regression (or covariance) analysis, with the outcome on the left hand side and the treatment 

dummy and the covariates as explanatory variables, including possible interactions between covariates and 

treatment dummies.  

Freedman (2008) has analyzed this method and argues  “if adjustment made a substantial 

difference, we would suggest much caution when interpreting the results.” But a substantial difference is 

exactly what we would like to see, at least some of the time, if the adjustment moves the estimate closer to 

the truth. Freedman shows that the adjusted estimate of the ATE is biased in finite samples, with the bias 

depending on the correlation between the squared treatment effect and the covariates. There is also no 

general guarantee that the regression adjustment will generate a more precise estimate, although it will do 

so if there are equal numbers of treatments and controls or if the treatment effects are constant over units 

(in which case there will also be no bias). Even with bias, the regression adjustment is attractive if it does 

indeed trade off bias for precision, though presumably not to RCT purists for whom unbiasedness is the 

sine qua non. Note again that the increased precision, when it exists, comes from using prior knowledge 

about the variables that are likely to be important for the outcome. That the background knowledge or 

theory is widely shared and understood will also provide some protection against data mining by searching 

through covariates in the search for (perhaps falsely) estimated precision. 
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1.2.7 Should we randomize? 

 

The tension between randomization and precision goes back to the early debate between Fisher and 

Student (Gosset) who never accepted Fisher’s arguments for randomization, see also Ziliak (2014). In his 

debate with Fisher about agricultural trials, Student argued that randomization ignored relevant prior 

information, for example about how likely confounders would be distributed across the test plots, so that 

randomization wasted resources and led to unnecessarily poor estimates. This general question of whether 

randomization is desirable has been reopened in recent papers by Kasy (2016), Banerjee, Chassang, and 

Snowberg (2016) and Banerjee, Chassang, Montero, and Snowberg (2016).  

Refer back to the MSE introduced above, and consider designing an experiment that will make this 

as small as possible. Unfortunately, this is not generally possible; for example, the “estimator” of 3, say, for 

the ATE has the lowest possible mean-squared error if the true ATE is actually 3. Instead, we need to 

average the MSE over a distribution of possible ATEs. This leads to a decision theory approach to 

estimation whereby a Bayesian econometrician will estimate the ATE by choosing the allocation of 

treatment and controls so as to minimize the expected value of a loss function—the MSE being one 

example. Such an approach requires us to specify a prior on the ATE, or more generally, on the expectation 

of outcomes conditional on the covariates. These priors are formal versions of the issue that has already 

come up repeatedly, that to get good estimators, we need to know something about how the covariates 

affect the outcome. Kasy (2016) solves this problem for the case of expected MSE and shows that 

randomization is undesirable; it simply adds noise and makes the MSE larger. He uses a non-parametric 

prior that has proved useful in a number of other applications—we could presumably do even better if we 

were prepared to commit further, and he provides code to implement his method, which shows a 20 

percent reduction in MSE compared with randomization (14 percent for stratified randomization) for the 

well-known Tennessee STAR class-size experiment.  

Banerjee et al propose a more general loss function and prove the comparable theorem, that 

randomization leads to larger losses than the optimal non-random purposive assignment. These authors 

recommend randomization on other grounds, which we will discuss below, but agree that, for standard 

statistical efficiency or maximization of expected utility randomization should not be used in experimental 

design. Student was right. 

Several points should be noted. First, the anti-randomization theorem is not a justification of any 

non-experimental design, for example one that compares outcomes of those who do or do not self-select 

into treatment. Selection effects are real enough, and if selection is based on unobservable causes, 

comparison of treated and controls will be biased. One acceptable non-random scheme is to use the 

observable covariates to divide the study sample into cells within which all observations have the same 
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value and then divide each cell into treatments and controls. Within each cell, or for those units on which 

we have no information, we can choose any way we like, including randomly, though randomization has no 

advantage or disadvantage. Such allocations rule out self-selection (or doctor or program administrator 

selection) where the individual (doctor, or administrator) has information not visible to the person 

assigning treatments and controls. The key is that the person who makes the assignment (the analyst) uses 

all of the information that he or she possesses, and that once this has been taken into account, all units are 

interchangeable conditional on that information, so that assignment beyond that does not matter. Of 

course, the program administrators must enforce the analyst’s assignment, so that private information that 

they or the units possess is not allowed to affect the assignment, conditional on the information used by 

the analyst. Given this, selection on unobservables is ruled out, and does not affect the results. 

Randomization is not required to eliminate selection bias.  

Whether it is really possible for the analyst to assign arbitrarily is an open question, as is whether 

“randomization” from a random-number generator will do so. Even machine-generated sequences have 

causes, and even if the analyst has only a set of uninformative labels for the units, those too must come 

from somewhere, so that it is possible that those causes are linked to the unobserved causes in the 

experiment. We do not attempt to deal here with these deep issues on the meaning of randomization, but 

see Singer and Pincus (1998). 

According to Chalmers (2001) and Bothwell and Podolsky (2016), the development of 

randomization in medicine originated with Bradford-Hill who used randomization in the first RCT in 

medicine—the streptomycin trial—because it prevented doctors selecting patients on the basis of 

perceived need (or against perceived need, leaning over backward as it were), an argument more recently 

echoed by Worrall (2007). Randomization serves this purpose, but so do other non-discretionary schemes; 

what is required is that the hidden information not affect the allocation. While it is true that doctors cannot 

be allowed to make the assignment, it is not true that randomization is the only scheme that can be 

enforced.  

Second, the ideal rules by which units are allocated to treatment or control depend on the 

covariates, and on the investigators’ priors about how the covariates affect the outcomes. This opens up all 

sorts of methods of inference that are excluded by pure randomization. For example, the hypothetico-

deductive method works by using theory to make a prediction that can be taken to the data; here the 

predictions would be of the form that a unit with characteristics x will respond in a particular way to 

treatment, falsification of which can be tested by an appropriate allocation of units to treatment. Banerjee, 

Chassang and Snowberg (2016) provide such examples. 

Third, randomization, by running roughshod over prior information from theory and from the 

covariates, is wasteful and even unethical when it unnecessarily exposes people, or unnecessarily many 
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people, to possible harm in a risky experiment, see Worrall (2002) for an egregious case of how an 

unthinking demand for randomization and the refusal to accept prior information put children’s lives 

directly at risk.  

Fourth, the non-random methods use prior information, which is why they do better than 

randomization. This is both an advantage and a disadvantage, depending on one’s perspective. If prior 

information is not widely accepted, or is seen as non-credible by those we are seeking to persuade, we will 

generate more credible estimates if we do not use those priors. Indeed, this is why Banerjee, Chassang and 

Snowberg (2016) recommend randomized designs, including in medicine and in development economics. 

They develop a theory of an investigator who is facing an adversarial audience that will challenge any prior 

information and can even potentially veto results that are based on it (think administrative agencies or 

journal referees). The experimenter trades off his or her own desire for precision (and preventing possible 

harm to subjects), which uses prior information, against the wishes of the audience, who want nothing of 

the priors. Even then, the approval of this audience is only ex ante; once the fully randomized experiment 

has been done, nothing stops critics arguing that, in fact, the randomization did not offer a fair test. Among 

doctors who use RCTs, and especially meta-analysis, such arguments are (appropriately) common; see 

again Kramer (2016). 

As we noted in the Introduction, much of the public has come to question expert prior knowledge, 

and Banerjee, Chassang, Montero and Snowberg (2016) have provided an elegant (positive) account of why 

RCTs will flourish in such an environment. In cases where there is good reason to doubt the good faith of 

experimenters, as in some pharmaceutical trials, randomization will indeed be the appropriate response. 

But we believe such arguments are deeply destructive for scientific endeavor and should be resisted as a 

general prescription for scientific research. Economists and other social scientists know a great deal, and 

there are many areas of theory and prior knowledge that are jointly endorsed by large numbers of 

knowledgeable researchers. Such information needs to be built on and incorporated into new knowledge, 

not discarded in the face of aggressive know-nothing ignorance. The systematic refusal to use prior 

knowledge and the associated preference for RCTs are recipes for preventing cumulative scientific 

progress. In the end, it is also self-defeating; to quote Rodrik (2016) “the promise of RCTs as theory-free 

learning machines is a false one.”  

 

1.3 Statistical inference in RCTs 

 

If we are to interpret the results of an RCT as demonstrating the causal effect of the treatment in the trial 

population, we must be able to tell whether the difference between the control and treatment means 

could have come about by chance. Any conclusion about causality is hostage to our ability to calculate 
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standard errors and accurate p–values. But this is not generally possible without assumptions that go 

beyond those needed to support the basic theorem of RCTs. In particular, it has long been known that the 

mean—and a fortiori the difference between two means—is a statistic that is sensitive to outliers. Indeed 

Bahadur and Savage (1956) demonstrate that, without restrictions on the parent distributions, standard t–

tests are inherently unreliable. 

The key problem here is skewness; standard t–tests break down in distributions with large 

skewness, see Lehmann and Romano (2005, p. 466–8). In consequence, RCTs will not work well when the 

distribution of the individual treatment effects is strongly asymmetric, at least if the standard two-sample 

t–statistics (or equivalently White’s (1980) heteroskedastic robust regression t–values) are used. While we 

may be willing to assume that treatment effects are symmetric in some cases, the need for such an 

assumption—which requires prior knowledge about the specific process being studied—undermines the 

argument that RCTs are largely assumption free and do not depend on such knowledge. There is a deep 

irony here. In the search for robustness and the desire to do away with unnecessary assumptions, the RCT 

can deliver the mean of the ATE, yet the mean—as opposed to the median, which cannot be estimated by 

an RCT—does not permit robust probability statements about the estimates of the ATE  

 How difficult is it to maintain symmetry? And how badly is inference affected when the distribution 

of treatment effects is not symmetric? In economics, many trials have outcomes valued in money. Does an 

anti-poverty innovation—for example microfinance—increase the incomes of the participants? Income 

itself is not symmetrically distributed, and this might be true of the treatment effects too, if there are a few 

people who are talented but credit-constrained entrepreneurs and who have treatment effects that are 

large and positive, while the vast majority of borrowers fritter away their loans, or at best make positive 

but modest profits. Another important example is expenditures on healthcare. Most people have zero 

expenditure in any given period, but among those who do incur expenditures, a few individuals spend huge 

amounts that account for a large share of the total. Indeed, in the famous Rand health experiment, 

Manning, Newhouse et al. (1987, 1988), there is a single very large outlier. The authors realize that the 

comparison of means across treatment arms is fragile, and, although they do not see their problem exactly 

as described here, they obtain their preferred estimates using a structural approach that is designed to 

explicitly model the skewness of expenditures.  

 In some cases, it will be appropriate to deal with outliers by trimming, eliminating observations 

that have large effects on the estimates. But if the experiment is a project evaluation designed to estimate 

the net benefits of a policy, the elimination of genuine outliers, as in the Rand Health Experiment, will 

vitiate the analysis. It is precisely the outliers that make or break the program. 
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1.3.1 Spurious statistical significance: an illustrative example 

 

We consider an example that illustrates what can happen in a realistic but simplified case. There is a parent 

population, or population of interest, defined as the collection of units for which we would like to estimate 

an average treatment effect. It might be all villages in India, or all recipients of food subsidies, or all users of 

health care in the US. From this population we have a sample that is available for randomization, the trial 

or experimental sample; in a randomized controlled trial, this will subsequently be randomly divided into 

treatments and controls.  Ideally, the trial sample would be randomly selected from the parent sample, so 

that the sample average treatment effect would be an unbiased estimator of the population average 

treatment effect; indeed in some cases the complete population of interest is available for the trial. Clearly, 

in these ideal cases, it is straightforward to use standard sampling theory to generalize the trial results from 

the sample to the population. However, for a number of practical and conceptual reasons, the trial sample 

is rarely either the whole population or a randomly selected subset, see Shadish et al (2002, pp. 341–8) for 

a good discussion of both practical and theoretical obstacles. 

In our illustrative example, there is parent population each member of which has his or her own 

treatment effect; these are continuously distributed with a shifted lognormal distribution with zero mean 

so that the population average treatment effect is zero. The individual treatment effects b  are distributed 

so that  b + e0.5 ∼ L(0,1) , for standardized lognormal distribution L. We have something like a 

microfinance trial in mind, where there is a long positive tail of rare individuals who can do amazing things 

with credit, while most people cannot use it effectively. A trial (experimental) sample of 2n  individuals is 

randomly drawn from the parent and is randomly split between n treatments and n controls. In the 

absence of treatment, everyone in the sample records zero, so the sample average treatment effect in any 

one trial is simply the mean outcome among the n treatments. For values of n equal to 25, 50, 100, 200, 

and 500 we draw 100 trial/experimental samples each of size 2n; with five values of n, this gives us 500 

trial/experimental samples in all. For each of these 500 samples, we randomize into n controls and n 

treatments, estimate the ATE and its estimated t–value (using the standard two-sample t–value, or 

equivalently, by running a regression with robust t–values), and then repeat 1,000 times, so we have 1,000 

ATE estimates and t–values for each of the 500 trial samples; these allow us to assess the distribution of 

ATE estimates and their nominal t–values for each trial.  

 

Table 1: RCTs with skewed treatment effects 

Sample size Mean of ATE 

estimates 

Mean of nominal t–

values 

Fraction null 

rejected (percent) 
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25 

50 

0.0268 

0.0266 

–0.4274 

–0.2952 

13.54 

11.20 

100 –0.0018 –0.2600 8.71 

200 0.0184 –0.1748 7.09 

500 –0.0024 –0.1362 6.06 

Note: 1,000 randomizations on each of 100 draws of the trial sample randomly drawn from a lognormal 
distribution of treatment effects shifted to have a zero mean. 

The results are shown in Table 1. Each row corresponds to a sample size. In each row, we show the 

results of 100,000 individual trials, composed of 1,000 replications on each of the 100 trial (experimental) 

samples. The columns are averaged over all 100,000 trials.  

The last column shows the fractions of times the true null is rejected and is the key result. When 

there are only 50 treatments and 50 controls (row 2), the (true) null is rejected 11.2 percent of the time, 

instead of the 5 percent that we would like and expect if we were unaware of the problem. When there are 

500 units in each arm, the rejection rate is 6.06 percent, much closer to the nominal 5 percent.  

Why does the standard application of the t–distribution give such strange results when all we are 

doing is estimating a mean? The problem cases are when the trial sample happens to contain one or more 

outliers, something that is always a risk given the long positive tail of the parent distribution. When this 

happens, everything depends on whether the outlier is among the treatments or the controls; in effect the 

outliers become the sample, reducing the effective number of degrees of freedom.  

 

Figure 1: Estimates of an ATE with an outlier in the trial sample 
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Figure 1 illustrates the estimated average treatment effects from an extreme case from the 

simulations with 100 observations in total, the second row of Table 1; the histogram shows the 1,000 

estimates of the ATE. The trial sample has a single large outlying treatment effect of 48.3; the mean (s.d.) of 

the other 99 observations is –0.51 (2.1); when the outlier is in the treatment group, we get the right-hand 

side of the figure, when it is not, we get the left-hand side. On the right-hand side, when the outlier is 

among the treatment group, the dispersion across outcomes is large, as is the estimated standard error, 

and so those outcomes rarely reject the null using the standard table of t–values. The over-rejections come 

from the left-hand side of the figure when the outlier is in the control group, the outcomes are not so 

dispersed, and the t–values can be large, negative, and significant. While these cases of bimodal 

distributions may not be common, and depend on large outliers, they illustrate the process that generates 

the over-rejections and spurious significance. 

We could escape these problems if we could calculate the median treatment effect, but RCTs 

cannot (without further assumption) identify the median, only the mean, and it is the mean that is at risk 

because of the Bahadur-Savage theorem. Note too that there is only moderate comfort to be taken in large 

sample sizes. While the last row is certainly better than the others, there are still many trial samples that 

are going to give sample average effects that are significant, even when the number we want is zero. The 

proof of the Bahadur-Savage theorem works by noting that for any sample size, it is always possible to find 

an outlier that will give a misleading t–value. Nor is there an escape here by using the Fisher exact method 

for inference; the Fisher method tests the null hypothesis that all of the treatment effects are zero whereas 

what we are interested in here, at least if we want to do project evaluation or cost-benefit analysis, is that 

the average treatment effect is zero. 

The problems illustrated above, that stem from the Bahadur-Savage theorem, are certainly not 

confined to RCTs, and occur more generally in econometric and statistical work. However, the analysis here 

illustrates that the simplicity of ideal RCTs, subtracting one mean from another, brings no exemption from 

troublesome problems of inference. Escape from these issues, as in the Rand Health Experiment, requires 

explicit modeling, or might be best handled by estimating quantiles of the treatment distribution, which 

again requires additional assumptions.  

 Our reading of the literature on RCTs in development suggests that they are not exempt from these 

concerns. Many development trials are run on (sometimes very) small samples, they have treatment effects 

where asymmetry is hard to rule out—especially when the outcomes are in money—and they often give 

results that are puzzling, or at least not easily interpreted in terms of economic theory. Neither Banerjee 

and Duflo (2012) nor Karlan and Appel (2011), who cite many RCTs, raise concerns about misleading 

inference, treating all results as solid. No doubt there are behaviors in the world that are inconsistent with 

standard economics, and some can be explained by standard biases in behavioral economics, but it would 
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also be good to be suspicious of the significance tests before accepting that an unexpected finding is well 

supported and theory should be revised. Replication of results in different settings may be helpful—if they 

are the right kind of places (see our discussion in Section 2)—but it hardly solves the problem given that the 

asymmetry may be in the same direction in different settings (and seems likely to be so in just those 

settings that are sufficiently like the original trial setting to be of use for inference about the trial 

population), and that the “significant” t–values will show departures from the null in the same direction, 

thus replicating spurious findings.   

 

1.3.2 Significance tests: Fisher-Behrens, robust inference, and multiple hypotheses 

 

Skewness of treatment effects is not the only threat to accurate significance tests. The two–sample t–

statistic is computed by dividing the ATE by the estimated standard error whose square is given by: 
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 where 0 refers to controls and 1 to treatments, so that there are 
  
n

1
 treatments and 

  
n

0
 controls, and 

 
m̂

1
 

and 
 
m̂

0
 are the two means. As has been long known, this t–statistic is not distributed as Student’s t if the 

two variances (treatment and control) are not identical; this is known as the Behrens–Fisher problem. In 

extreme cases, when one of the variances is zero, the t–statistic has effective degrees of freedom half of 

that of the nominal degrees of freedom, so that the test-statistic has thicker tails than allowed for, and 

there will be too many rejections when the null is true.  

In a remarkable recent paper, Young (2016) argues that this problem gets much worse when the 

trial results are analyzed by regressing outcomes not only on the treatment dummy, but also on additional 

controls, some of which might interact with the treatment dummy. Again the problem concerns outliers in 

combination with the use of clustered or robust standard errors. When the design matrix is such that the 

maximal influence is large, so that for some observations outcomes have large influence on their own 

predicted values, there is a reduction in the effective degrees of freedom for the t–value(s) of the average 

treatment effect(s) leading to spurious findings of significance.  

Young looks at 2003 regressions reported in 53 RCT papers in the American Economic Association 

journals and recalculates the significance of the estimates using Fisher’s randomization inference applied to 

the authors’ original data; see again Imbens and Wooldridge (2009) for a good modern account of Fisher’s 

method. In 30 to 40 percent of the estimated treatment effects in individual equations with coefficients 

that are reported as significant, he cannot reject the null of no effect; the fraction of spuriously significant 

results increases further when he simultaneously tests for all results in each paper.  These spurious findings 
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come in part from the well-known problem of multiple-hypothesis testing, both within regressions with 

several treatments and across regressions. Within regressions, treatments are largely orthogonal, but 

authors tend to emphasize significant t–values even when the corresponding F-tests are insignificant. 

Across equations, results are often strongly correlated, so that, at worst, different regressions are reporting 

variants of the same result, thus spuriously adding to the “kill count” of significant effects. At the same 

time, the pervasiveness of observations with high influence generates spurious significance on its own. 

Our sense is that these issues are being taken more seriously in recent work, especially as concerns 

multiple hypothesis testing. Young himself is a strong proponent of RCTs in general and believes that 

randomization inference will yield correct inferences. Yet randomization inference can only test the null 

that all treatment effects are zero, that the experiment does nothing to anyone, whereas many 

investigators are interested in the weaker hypothesis that the average treatment effect is zero. This simply 

makes matters worse since the stronger hypothesis implies the weaker hypothesis and there are 

presumably undiscovered cases where the ATE is spuriously significant, even when the Fisher test rejects 

that all treatment effects are zero. Note that testing does not always match logic; it is possible to reject the 

null that the ATE is zero even when we can simultaneously accept the (joint) hypothesis that all treatment 

effects are zero; this is familiar from OLS regression, where an F–test can show joint insignificance, even 

when a t–test of some linear combination is significant.  

 It is clear that, as of now, all reported significance levels from RCT results in economics should be 

treated with considerable caution. Greater care about skewness and outliers would help, as would greater 

use of the Fisher method and of procedures that deal correctly with multiple hypothesis testing. Yet if the 

null hypothesis is that the average treatment effect is zero, as in most project evaluation, the Fisher test is 

not available, so that we currently do not have a reliable set of procedures. Robust or clustered standard 

errors are necessary to allow for the possibility that treatment changes variances, and the inclusion of 

covariates is necessary to control for imbalance in finite samples. 

 

1.4 Blinding 

 

Blinding is rarely possible in economics or social science trials, and this is one of the major differences from 

most (although not all) RCTs in medicine, where blinding is standard, both for those receiving the 

treatment and those administering it. Indeed, the ability to blind has been one of the key arguments in 

favor of randomization, from Bradford-Hill in the 1950s, see Chalmers (2003), to welfare trials today, 

Gueron and Rolston (2013). Consider first the blinding of subjects. Subjects in social RCTs usually know 

whether they are receiving the treatment or not and so can react to their assignment in ways that can 

affect the outcome other than through the operation of the treatment; in econometric language, this is 
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akin to a violation of exclusion restrictions, or a failure of exogeneity. In terms of (1), there is a pathway 

from the treatment assignment to another unobserved cause, which will result in a biased ATE. This is not 

to argue in favor of instrumental variables over RCTs, or vice versa, but simply to note that, without 

blinding, RCTs do not automatically solve the selection problem any more than IV estimation automatically 

solves the selection problem. In both cases, the exogeneity (exclusion restriction) argument needs to be 

explicitly made and justified. Yet the literature in economics gives great attention to the validity of 

exclusion restrictions in IV estimation, while tending to shrug off the essentially identical problems with 

lack of blinding in RCTs. 

Note also that knowledge of their assignment may cause people to want to cross over from 

treatment to control, or vice versa, to drop out of the program, or to change their behavior in the trial 

depending on their assignment. In extreme cases, only those members of the trial sample who expect to 

benefit from the treatment will accept treatment.  Consider, for example, a trial in which children are 

randomly allocated to two schools that teach in different languages, Russian or English, as happened during 

the breakup of the former Yugoslavia. The children (and their parents) know their allocation, and the more 

educated, wealthier, and less-ideologically committed parents whose children are assigned to the Russian-

medium schools can (and did) remove their children to private English-medium schools. In a comparison of 

those who accepted their assignments, the effects of the language of instruction will be distorted in favor 

of the English schools by differences in family characteristics. This is a case where, even if the random 

number generator is fully functional, a later balance test will show systematic differences in observable 

background characteristics between the treatment and control groups; even if the balance test is passed, 

there may still be selection on unobservables for which we cannot test.  

More generally, when people know their allocation, when they have a stake in the outcome, and 

when the treatment effect is different for different people, there are incentives and opportunities for 

selection in response to the randomization, and that selection can contaminate the estimated average 

treatment effect, see Heckman (1997) who makes the same point in the context of instrumental variables. 

Those who were randomized by a lottery into going to Vietnam will have different treatment effects 

depending on their labor market prospects, and those with better prospects are more likely to resist the 

draft. As we shall see in the next subsection, various statistical corrections are available for a few of the 

selection problems non-blinding presents, but all rely on the kind of assumptions that, while common in 

observational studies, RCTs are designed to avoid. Our own view is that assumptions and the use of prior 

knowledge are what we need to make progress in any kind of analysis, including RCTs whose promise of 

assumption-free learning is always likely to be illusory. 

There may be a tendency in economics to focus on the selection bias effects of non-blinding 

because some solutions are available, but selection bias is not the only serious source of bias in social and 
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medical trials. Concerns about the placebo, Pygmalion, Hawthorne, John Henry, and 'teacher/therapist' 

effects are widespread across studies of medical and social interventions. This literature argues that double 

blinding should be replaced by quadruple blinding; blinding should extend beyond participants and 

investigators and include those who measure outcomes and those who analyze the data, all of whom may 

be affected by both conscious and unconscious bias. The need for blinding in those who assess outcomes is 

particularly important in any cases where outcomes are not determined by strictly prescribed procedures 

whose application is transparent and checkable but requires elements of judgment; a good example is 

therapists who are asked to assess the extent of depression in clinical trials of anti-depressants, see Kramer 

(2016).  

The lesson here is that blinding matters and is very often missing. There is no reason to suppose 

that a poorly blinded trial with random assignment trumps better blinded studies with alternative 

allocation mechanisms, or matched studies.  

 

1.5 What do RCTs do in practice?  

 

The execution of an RCT will often deviate from its design. People may not accept their assignment, 

controls may manage to get treatment, and vice versa, and people may accept their assignment, but drop 

out before the completion of the study. In some designs, the trial works by giving people incentives to 

participate, for example by mailing them a voucher that gives them subsidized access to a school or to a 

savings product. If the aim is to evaluate the voucher scheme itself, no new issue arises. However, if the 

aim is to find out what the education or savings program does, and the voucher is simply a device to induce 

variation, much depends on whether or not people decide to use the voucher which, like attrition and 

crossover, is subject to purposive decisions by the subjects inducing differences between treatments and 

controls. 

 Everything depends on the purpose of the trial. In the example above, we may want to evaluate 

the voucher program, or we may want to find out what the saving product does for people. We are 

sometimes interested in establishing causality, and sometimes in estimating an average treatment effect; in 

the economics literature, some writers define internal validity as getting the ATE right, while others, 

following the original definition of the term, define internal validity as getting causality right. Sometimes 

the trial limits itself to establishing causality (or to estimating an ATE) in only the trial sample, but some 

trials are more ambitious, and try to establish causality (or estimate an ATE) for a broader population of 

interest. When, as is common in economics trials, no limits are placed on the heterogeneity of treatment 

responses, different trial samples and different populations will generally have different ATEs and may have 

different casual outcomes, e.g. if the treatment has an effect in one population but none or the opposite 
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effect in another. Our view is that the target of the trial, including the population of interest, needs to be 

defined in advance. Otherwise, almost any estimated number can be interpreted as a valid ATE for some 

population, we allow deviations from the design to define our target, and we have no way of knowing 

whether apparently contradictory results are really contradictory or are correct for the population on 

which they were derived. Differences in results, between different RCTs and between RCTs and 

observational studies, may owe less to the selection effects that RCTs are designed to remove, than to the 

fact that we are comparing non-comparable people, Heckman, Lalonde, and Smith (1999, p. 2082). Without 

a clear idea of how to characterize the population of individuals in the trial, whether we are looking for an 

ATE or to identify causality, and for which groups enrolled in the trial the results are supposed to hold, we 

have no basis for thinking about how to use the trial results in other contexts.   

 To illustrate some of the issues, consider a simple RCT in which a treatment T is administered to a 

trial sample that is split between a treatment group of size n and a control group of size n, but that only a 

fraction p of the treatment group accepts their assignment, with fraction (1- p) receiving no treatment. 

Suppose that the parameter of interest is the ATE in the original population, from which the trial sample 

was drawn randomly. Denote by b  the hypothetical ideal ATE estimate that would have been calculated if 

everyone had accepted assignment; as we have seen, this is an unbiased estimator of the parameter of 

interest for both the trial sample and the parent population. b  cannot be calculated, but there are various 

options.  

Option one is to ignore the original assignment and calculate the difference in means between 

those who received the treatment and those who did not, including among the latter those who were 

intended to receive it but did not. Denote this (“as treated”) estimate b1. Alternatively, option two, is to 

compare the average outcome among those who were intended to be treated and those who were 

intended to be controls. Denote this estimate, the “intent to treat” (ITT) estimator, b2 .  It is easy to show 

that one set of conditions for b1 = b  is that those who were treated have the same ATE as those who were 

intended to be treated, and that those who broke their assignment have the same untreated mean as 

those who were assigned to be controls, conditions that may hold in some applications, for example where 

the treatment effects are identical.  

The ITT estimator, b2
, will typically be closer to zero than is b , and it will certainly be so if the 

average treatment effect among those who break their assignment is the same as the overall ATE, in which 

case b2 = pb. For these reasons, the ITT is often described as yielding a conservative estimate and is 

routinely advocated in medical trials even though it is an attenuated estimator of the ATE. A third 

estimator, b3
, the local average treatment estimator (LATE) is computed by running a regression of 

outcomes on an (actual) treatment dummy using the treatment assignment as an instrumental variable. In 
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this case, the LATE is simply the ITT, scaled up by the reciprocal of p, so that b3 = b2 / p. From the above, 

the LATE is b  if the average treatment effect of those who break their assignment is the same as the 

average treatment effect in general, so that the ITT estimator is biased down by counting those who should 

have been treated as if they were controls. More generally, and with additional assumptions, Imbens and 

Angrist (1994) show that the LATE is the average treatment effect among those who were induced to 

accept the treatment by their assignment to treatment status, which can be a very different object from 

the original target of investigation. These various estimators, the ATE, the ITT, and the LATE, are all 

averages over different groups; more formally, Heckman and Vytlacil (2005) define a marginal treatment 

effect (MTE) as the ATE for those on the margin of treatment—whatever the assignment mechanism—and 

show that the other estimators can be thought of as averages of the MTEs over different populations. 

 In general, and unless we are prepared to say more about the heterogeneity in the treatment 

effects, the three estimators will give different results because they are averages over different 

populations. Economists tend to believe that people act in their own interest, at least in part, so it is not 

attractive to believe that those who break their assignments have the same distribution of treatment 

effects as do those who accept them. In Heckman’s (1992) analogy, people are not like agricultural plots, 

which are in no position to evade the treatment when they see it coming. Such purposive behavior will 

generally also affect the composition of the trial sample compared with the parent population, with those 

who agree to participate different from those who do not. For example, people may dislike randomization 

because of the risks it entails, or people may seek to enter trials in the hope that they will receive a 

beneficial treatment that is otherwise unavailable. A famous example in economics is the Ashenfelter 

(1978) pre-program “dip,” where those who enter trials of training programs tend to be those whose 

earnings have fallen immediately prior to enrolment, see also Heckman and Smith (1999). People who 

participate in drug trials are more likely to be sick than those who do not, or are likely to be those who have 

failed on standard medication. Another example is Chyn’s (2016) evidence that those who applied for 

vouchers in the Moving to Opportunity experiment and were thus eligible for randomization—and only a 

quarter of those who were eligible actually did so—were those who were already making unusual efforts 

on their children’s behalf. These parents had effectively substituted for part of the better environment, so 

that the ATE from the trial understates the benefits to the average child of moving. Similar phenomena 

occur in medicine. In the 1954 trials of the Salk polio vaccine in the US, the rates of infection, while lowest 

among the treated children, were higher in the control children than in the general population at risk, so 

that the parents of those who selected into the trial presumably had some idea that they might have been 

exposed, Hausman and Wise (1985, p. 193–4). In this case, the average treatment effect in the trial sample 

exaggerates the ATE in the general population, which is what we want to know for public policy.  
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Given the non-parametric spirit of RCTs, and the unwillingness of many trialists to make 

assumptions or to incorporate prior information, the only way forward is to be very clear about the 

purpose of the trial and, in particular, which average we are trying to estimate. For those who focus on 

internal validity in terms of establishing causality by finding an ATE significantly different from zero, the 

definition of the population seems to be a secondary concern. The idea seems to be that if causality is 

established in some population, that finding is important in itself, with the task of exploring its applicability 

to other populations left as a secondary matter. For the many economic or cost–benefit analyses where the 

ATE is the parameter of interest, the population of interest is definitional, and the inference needs to focus 

on a path from the results of the trial to the parameter of interest. This is often difficult or even impossible 

without additional assumptions and/or modeling of behavior, including the decision to participate in the 

trial, and among participants, the decision not to drop out. Manski (1990, 1995, 2003) has shown that, 

without additional evidence, the population ATE is not (point) identified from the trial results, and has 

developed non-parametric bounds (an interval estimate) for the ATE. As with the ITT, these bounds are 

sometimes tight enough to be informative, though the interval defined by the bounds will often contain 

zero, see Manski (2013) for a discussion aimed at a broad audience. Faced with this, many scholars are 

prepared to make assumptions or to build models that give more precise results.  

RCTs may tell us about causality, even when they do not deliver a good estimate of the ATE.  For 

example, if the ITT estimate is significantly different from zero, the treatment has a causal effect for at least 

some individuals in the population. The same is true if the LATE is significantly different from zero; again 

the treatment is causal for some sub-population, even if we may have difficulty characterizing it or 

accepting it as the population of interest. From this, we also learn that, provided we had a population with 

the right distribution of bi 's  and governed by the same potential outcome equation, the treatment would 

produce the effect in at least some individuals there. 

 

Section 2: Using the results of randomized controlled trials 

 

2.1 Introduction 

 

Suppose we have the results of a well-conducted RCT. We have estimated an average treatment effect, and 

our standard error gives us reason to believe that the effect did not come about by chance. We thus have 

good warrant that the treatment causes the effect in our sample population, up to the limits of statistical 

inference. What are such findings good for? How should we use them? 

The literature in economics, as indeed in medicine and in social policy, has paid more attention to 

obtaining results than to whether and how they should be adapted for use, often assuming that findings 
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can be used “as is.” Much effort is devoted to demonstrating causality and estimating effect sizes in study 

populations, both in empirical work—more and better RCTs, or substitutes for RCTs, such as instrumental 

variables or regression discontinuity models—as well as in theoretical statistical work—for example on the 

conditions under which we can estimate an average treatment effect, or a local average treatment effect, 

and what these estimates mean. There is less theoretical or empirical work to guide us how and for what 

purposes to use the findings of RCTs, such as the conditions under which the same results hold outside of 

the original settings, how they might be adapted for use elsewhere, or how they might be used for 

formulating, testing, understanding, or probing hypotheses beyond the immediate relation between the 

treatment and the outcome investigated in the study. 

Yet it cannot be that knowing how to use results is less important than knowing how to 

demonstrate them. Any chain of evidence is only as strong as it weakest link, so that a rigorously 

established effect whose applicability is justified by a loose declaration of simile warrants little more than 

an estimate that was plucked out of thin air. If trials are to be useful, we need paths to their use that are as 

carefully constructed as are the trials themselves. 

 It is sometimes assumed that a parameter, once well established, is invariant across settings. The 

parameter may be difficult to estimate, because of selection or other issues, and it may be that only a well-

conducted RCT can provide a credible estimate of it. If so, internal validity is all that is required, and debate 

about using the results becomes a debate about the conduct of the study. The argument for the “primacy 

of internal validity,” Shadish, Cook, and Campbell (2002), is reasonable as a warning that bad RCTs are 

unlikely to generalize, but it is sometimes incorrectly taken to imply that results of an internally valid trial 

will automatically or often apply ‘as is’ elsewhere, or that this is the default assumption failing arguments 

to the contrary. An invariance argument is often made in medicine, where it is sometimes plausible that a 

particular procedure or drug works the same way everywhere, though see Horton (2000) for a strong 

dissent and Rothwell (2005) for examples on both sides of the question. We should also note the recent 

movement to ensure that testing of drugs includes women and minorities because members of those 

groups suppose that the results of trials on mostly healthy young white males do not apply to them.  

 

2.2 Using results, transportability, and external validity 

 

Suppose a trial has established a result in a specific setting, and we are interested in using the result 

outside the original context.  If “the same” result holds elsewhere, we say we have external validity, 

otherwise not. External validity may refer just to the transportability of the causal connection, or go further 

and require replication of the magnitude of the average treatment effect. Either way, the result holds—

everywhere, or widely, or in some specific elsewhere—or it does not.  
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This binary concept of external validity is often unhelpful; it both overstates and understates the 

value of the results from an RCT. It directs us toward simple extrapolation—whether the same result will 

hold elsewhere—or simple generalization—whether it holds universally or at least widely—and away from 

possibly more complex but more useful applications of the evidence. Just as internal validity says nothing 

about whether or not a trial result will hold elsewhere, the failure of external validity interpreted as simple 

generalization or extrapolation says little about the value of the trial.  

First, there are several uses of RCTs that do not require transportability beyond the original 

context; we discuss these in the next subsection. Second, there are often good reasons to expect that the 

results from a well-conducted, informative, and potentially useful RCT will not apply elsewhere in any 

simple way. Even successful replication by itself tells us little either for or against simple generalization or 

extrapolation. Without further understanding and analysis, even multiple replications cannot provide much 

support for, let alone guarantee, the conclusion that the next will work in the same way. Nor do failures of 

replication make the original result useless. We can often learn much from coming to understand why 

replication failed and use that knowledge to make appropriate use of the original findings, not by expecting 

replication, but by looking for how the factors that caused the original result might be expected to operate 

differently in different settings. Third, and particularly important for scientific progress, the RCT result can 

be incorporated into a network of evidence and hypotheses that test or explore claims that look very 

different from the results reported from the RCT. We shall give examples below of extremely useful RCTs 

that are not externally valid in the (usual) sense that their results do not hold elsewhere, whether in a 

specific target setting or in the more sweeping sense of holding everywhere. 

Bertrand Russell’s chicken provides an excellent example of the limitations to straightforward 

extrapolation from repeated successful replication. The bird infers, based on multiply repeated evidence, 

that when the farmer comes in the morning, he feeds her. The inference serves her well until Christmas 

morning, when he wrings her neck and serves her for Christmas dinner. Of course, our chicken did not base 

her inference on an RCT. But had we constructed one for her, we would have obtained exactly the same 

result that she did. Her problem was not her methodology, but rather that she was studying surface 

relations, and that she did not understand the social and economic structure that gave rise to the causal 

relations that she observed. So she did not know how widely or how long they would obtain. Russell notes, 

“more refined views as to the uniformity of nature would have been useful to the chicken” (1912, p. 44). 

We often act as if the methods of investigation that served the chicken so badly will do perfectly well for 

us.  

Establishing causality does nothing in and of itself to guarantee generalizability. Nor does the 

ability of an ideal RCT to eliminate bias from selection or from omitted variables mean that the resulting 

ATE will apply anywhere else.  The issue is worth mentioning only because of the enormous weight that is 
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currently attached in economics to the discovery and labeling of causal relations, a weight that is hard to 

justify for effects that may have only local applicability, what might (perhaps provocatively) be labeled 

‘anecdotal causality’. The operation of a cause generally requires the presence of support or helping 

factors, without which a cause that produces the targeted effect in one place, even though it may be 

present and have the capacity to operate elsewhere, will remain latent and inoperative. What Mackie 

(1974) called INUS causality (Insufficient but Non-redundant parts of a condition that is itself Unnecessary 

but Sufficient for a contribution to the outcome) is often the kind of causality we see; a standard example is 

a house burning down because the television was left on, although televisions do not operate in this way 

without helping factors, such as wiring faults, the presence of tinder, and so on. This is standard fare in 

epidemiology, which uses the term “causal pie” to refer to the case where a set of causes are jointly but 

not separately sufficient for an effect. If we rewrite (3) in the form: 
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Since the ATE is the average of the 
  
b

i
's , two populations will have the same ATE only if, except by 

accident, they have the same average for the support factors necessary for the treatment to work. These 

are however just the kind of factors that are likely to be differently distributed in different populations, and 

indeed we do generally find different ATEs in different development (and other social policy) RCTs in 

different places even in the cases where (unusually) they all point in the same direction. 

Causal processes often require highly specialized economic, cultural, or social structures to enable 

them to work. Consider the Rube Goldberg machine that is rigged up so that flying a kite sharpens a pencil, 

Cartwright and Hardie (2012, 77), or another where a long chain of ropes and pulleys causes the insertion 

of food into the mouth to activate a face-wiping napkin. These are causal machines, but they are specially 

constructed to give a kind of causality that operates extremely locally and has no general applicability. The 

underlying structure affords a very specific form of (6) that will not describe causal processes elsewhere.  

Neither the same ATE nor the same qualitative causal relations can be expected to hold where the specific 

form for (6) is different.  

Indeed, we continually attempt to design systems that will generate causal relations that we like 

and that will rule out causal relations that we do not like. Healthcare systems are designed to prevent 

nurses and doctors making errors; cars are designed so that drivers cannot start them in reverse; work 

schedules for pilots are designed so they do not fly too many consecutive hours without rest because 

alertness and performance are compromised. 
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As in the Rube Goldberg machines and in the design of cars and work schedules, the economic 

structure and equilibrium may differ in ways that support different kinds of causal relations and thus 

render a trial in one setting useless in another. For example, a trial that relies on providing incentives for 

personal promotion is of no use in a state in which a political system locks people into their social and 

economic positions. Conditional cash transfers cannot improve child health in the absence of functioning 

clinics. Policies targeted at men may not work for women. We use a lever to toast our bread, but levers 

only operate to toast bread in a toaster; we cannot brown toast by pressing an accelerator, even if the 

principle of the lever is the same in both a toaster and a car. If we misunderstand the setting, if we do not 

understand why the treatment in our RCT works, we run the same risks as Russell’s chicken.  

 

2.3 When RCTs speak for themselves: no transportability required 

 

For some things we want to learn, an RCT is enough by itself. An RCT may disprove a general theoretical 

proposition to which it provides a counterexample. The test might be of the general proposition itself (a 

simple refutation test), or of some consequence of it that is susceptible to testing using an RCT (a complex 

refutation test). Of course, counterexamples are often challenged—for example, it is not the general 

proposition that caused the rejection, but a special feature of the trial—but here we are on familiar 

inferential turf. An RCT may also confirm a prediction of a theory, and although this does not confirm the 

theory, it is evidence in its favor, especially if the prediction seems inherently unlikely in advance. Once 

again, this is familiar territory, and there is nothing unique about an RCT; it is simply one among many 

possible testing procedures. Even when there is no theory, or very weak theory, an RCT, by demonstrating 

causality in some population can be thought of as proof of concept, that the treatment is capable of 

working somewhere. This is one of the arguments for the importance of internal validity.  

Another case where no transportation is called for is when an RCT is used for evaluation, for 

example to satisfy donors that the project they funded actually achieved its aims in the population in which 

it was conducted. Even so, for such evaluations, say by the World Bank, to be global public goods requires 

the development of arguments and guidelines that justify using the results in some way elsewhere; the 

global public good is not an automatic by-product of the Bank fulfilling its fiduciary responsibility. When the 

components of treatments change across studies, evaluations need not lead to cumulative knowledge. Or 

as Heckman et al (1999, p.1934) note, “the data produced from them [social experiments] are far from 

ideal for estimating the structural parameters of behavioral models. This makes it difficult to generalize 

findings across experiments or to use experiments to identify the policy-invariant structural parameters 

that are required for econometric policy evaluation.” Of course, when we ask exactly what those invariant 

structural parameters are, whether they exist, and how they should be modeled, we open up major fault 
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lines in modern applied economics. For example, we do not intend to endorse intertemporal dynamic 

models of behavior as the only way of recovering the parameters that we need. We also recognize that the 

usefulness of simple price theory is not as universally accepted as it once was. But the point remains that 

we need something, some regularity, and that the something needed can rarely be recovered by simply 

generalizing across trials.  

A third non-problematic and important use of an RCT is when the parameter of interest is the 

average treatment effect in a well-defined population from which the sample trial population—from which 

treatments and controls are randomly assigned—is itself a random sample. In this case the sample average 

treatment effect (SATE) is an unbiased estimator of the population average treatment effect (PATE) that, by 

assumption, is our target, see Imbens (2004) for these terms. We refer to this as the “public health” case; 

like many public health interventions, the target is the average, “population health,” not the health of 

individuals.  One major (and widely recognized) danger of the public-health-style uses of RCTs is that the 

scaling up from (even a random) sample to the population will not go through in any simple way if the 

outcomes of individuals or groups of individuals change the behavior of others—which will be common in 

economic examples but perhaps less common in health. There is also an issue of timing if the results are to 

be implemented some time after the trial.  

In economics, a ‘public-health-style’ example is the imposition of a commodity tax, where the total 

tax revenue is of interest and we do not care who pays the tax. Indeed, theory can often identify a specific, 

well-defined magnitude whose measurement is key for the policy; see Deaton and Ng (1998) for an 

example of what Chetty (2009) calls a “sufficient” statistic. In this case, the behavior of a random sample of 

individuals might well provide a good guide to the tax revenue that can be expected. Another case comes 

from work on poverty programs where the interest of the sponsors is in the consequences for the budget 

of the state responsible for the program; we discuss these cases at the end of this Section. Even here, it is 

easy to imagine behavioral effects coming into play that drive a wedge between the trial and its full scale 

implementation, for example if compliance is higher when the scheme is widely publicized, or if 

government agencies implement the scheme differently from trialists.  

 

2.4 Transporting results laterally and globally 

 

The program of RCTs in development economics, as in other areas of social science, has the broader goal of 

finding out “what works.” At its most ambitious, this aims for universal reach, and the development 

literature frequently argues that “credible impact evaluations are global public goods in the sense that they 

can offer reliable guidance to international organizations, governments, donors, and nongovernmental 

organizations (NGOs) beyond national borders,” Kremer and Duflo (2008, p. 93). Sometimes the results of a 
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single RCT are advocated as having wide applicability, with especially strong endorsement when there is at 

least one replication.  For example, Kremer and Holla (2009) use a Kenyan trial as the basis for a blanket 

statement without context restriction, “Provision of free school uniforms, for example, leads to 10%-15% 

reductions in teen pregnancy and drop out rates.” Kremer and Duflo (2008), writing about another trial, are 

more cautious, citing two evaluations, and restricting themselves to India: “One can be relatively confident 

about recommending the scaling-up of this program, at least in India, on the basis of these estimates, since 

the program was continued for a period of time, was evaluated in two different contexts, and has shown its 

ability to be rolled out on a large scale.” 

Of course, the problem of generalization extends beyond RCTs, to both “fully controlled” 

laboratory experiments and to most non-experimental findings. For example, ever since Alfred Marshall 

thought of it while sunbathing, economists have used the concept of an elasticity—as in the income 

elasticity of the demand for food, or the price elasticity of the supply of cotton—and have transported 

elasticities—which are conveniently dimensionless—from one context to another, as numerical estimates, 

or in ranges, such as high, medium, or low. Articles that collect such estimates are widely cited even 

though, as has long been known, the invariance of elasticities is not guaranteed in practice and is 

sometimes inconsistent with choice theory. Our argument here is that evidence from RCTs, like evidence 

on elasticities, is not automatically simply generalizable, and that its internal validity, when it exists, does 

not provide it with any unique invariance across context. We shall also argue that specific features of RCTs, 

such as their freedom from parametric assumptions, although advantageous in estimation, can be a serious 

handicap in use.  

Most advocates of RCTs understand that “what works” needs to be qualified to “what works under 

which circumstances,” and try to say something about what those circumstances might be, for example, by 

replicating RCTs in different places, and thinking intelligently about the differences in outcomes when they 

find them. Sometimes this is done in a systematic way, for example by having multiple treatments within 

the same trial so that it is possible to estimate a “response surface,” that links outcomes to various 

combinations of treatments, see Greenberg and Schroder (2004) or Shadish et al (2002). For example, the 

RAND health experiment had multiple treatments, allowing investigation, not only of whether health 

insurance increased expenditures, but how much it did so under different circumstances. Some of the 

negative income tax experiments (NITs) in the 1960s and 1970s were designed to estimate response 

surfaces, with the number of treatments and controls in each arm optimized to maximize precision of 

estimated response functions subject to an overall cost limit, Conlisk (1973). Experiments on time-of-day 

pricing for electricity had a similar structure, see Aigner (1985). 

The MDRC experiments have also been analyzed across cities in an effort to link city features to the 

results of the RCTs within them, Bloom, Hill, and Riccio (2005). Unlike the RAND and NIT examples, these 
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are ex post analyses of completed trials; the same is true of Vivalt (2015) who assembles evidence on a 

large number of trials, and finds, for the collection of trials she studied, that development-related RCTs run 

by government agencies typically find smaller (standardized) effect sizes than RCTs run by academics or by 

NGOs. Bold et al (2013), who ran parallel RCTs on an intervention implemented either by an NGO or by the 

government of Kenya, found similar results there. Note that these analyses have a different purpose from 

those meta-analyses that assume that different trials estimate the same parameter up to noise and average 

in order to increase precision. 

Although there are issues with all of these methods of investigating differences across trials, 

without some discipline it is too easy to come up with “just-so” or fairy stories that account for almost any 

differences. We risk a procedure that, if a result is replicated in full or in part in at least two places, puts 

that treatment into the “it works” box and, if the result does not replicate, causally interprets the 

difference in a way that allows at least some of the findings to survive. 

How can we think about this more seriously? How can we do better than simple generalization and 

simple extrapolation? Many writers have emphasized the role of theory in transporting and using the 

results of trials, and we shall discuss this further in the next subsection. But statistical approaches are also 

widely used; these are designed to deal with the possibility that treatment effects vary systematically with 

other variables. Referring back to (6), suppose that the bi 's , the individual treatment effects, are 

functions of a set of K observable or unobservable support variables, wik
, and that the non-vacuous w’s 

may even represent different features in different places.  It is then clear that, provided the distribution of 

the w values is the same in the new circumstances as the old, then the ATE in the original trial will hold in 

the new circumstances. In general, of course, this condition will not hold, nor do we have any obvious way 

of checking it unless we know what the support factors are in both places.  

One procedure to deal with interactions is post-experimental stratification, which parallels post-

survey stratification in sample surveys. The trial is broken up into subgroups that have the same 

combination of known, observable w’s, the ATEs within each of the subgroups calculated, and then 

reassembled according to the configuration of w’s in the new context. For example, if the treatment effects 

vary with age, the age-specific ATEs can be estimated, and the age distribution in the new context used to 

reweight the age-specific ATEs to give a new, overall, ATE. This can be used to estimate the ATE in a new 

context, or to correct estimates to the parent population when the trial sample is not a random sample of 

the parent. Of course, this method will only work in special cases; for example, if we only know some of the 

w’s, there is no reason to suppose that reweighting for those alone will give a useful correction. 

Other methods also work when there are too many w’s for stratification, for example by estimating 

the probability of each observation in the population being included in the trial sample as a function of the 
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w’s, then weighting each observation by the inverse of these propensity scores. A good reference for these 

methods is Stuart et al (2011), or in economics, Angrist (2004) and Hotz, Imbens, and Mortimer (2005).      

There are yet further reasons why these methods do not always work. As with any form of 

reweighting, the variables used to construct the weights must be present in both the original and new 

context. If treatment effects vary by sex, we cannot predict the outcomes for men using a trial sample that 

is entirely female. If we are to carry a result forward in time, we may not be able to extrapolate from a 

period of low inflation to a period of high inflation; as Hotz et al (2005) note, it will typically be necessary to 

rule out such “macro” effects, whether over time, or over locations. It also depends on assuming that the 

same governing equation (6) covers the trial and the target population. If they differ not only by what 

causal factors are present in what proportions but also in how (if at all) the causes contribute to the effects, 

re-weighting the effect sizes that occur in trial sub-populations will not produce good predictions about 

target population outcomes.  

It should be clear from this that reweighting works only when the observable factors used for 

reweighting include all and only genuine interactive causes; we need data on all the relevant interactive 

factors. But as Muller (2015) notes, this takes us back to the situation that RCTs are designed to avoid, 

where we need to start from a complete and correct specification of the causal structure. RCTs can avoid 

this in estimation—which is one of their strengths, supporting their credibility—but the benefit vanishes as 

soon as we try to carry their results to a new context.  

Pearl and Bareinboim (2014) use Pearl’s do–calculus to provide a fuller formal analysis for 

transportability of causal empirical findings across populations. They define transportability as “a license to 

transfer causal effects learned in RCTs to a new population, in which only observational studies can be 

conducted,” Pearl and Bareinboim (2015, p. 1). They consider both qualitative causal relations, which they 

represent in directed acyclic graphs, and probabilistic facts, such as the conditional probability of the 

outcome on a treatment conditional on some third factor. They then provide theorems about what the 

relationship between the causal and probabilistic facts in two populations must be if it is to be possible to 

infer a particular causal fact, such as the ATE, about population 2 from causal and probabilistic information 

about population 1 coupled with purely probabilistic information about population 2.  Not surprisingly, for 

many things we should like to know about population 2, knowledge of even the full structure on population 

1 will not suffice. Inferences to facts about a new population require not only that the facts we suppose 

about population 1—like an ATE—are well grounded, that the RCT was well conducted, that the statistical 

inference is sound—but that we have equally good grounding for other assumptions we need about the 

relation between the two populations. For example, using the result described above for directly 

transporting the ATE from a trial population to some other—simple extrapolation—we need good grounds 
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to suppose both that the average of the net effect of the interactive factors is the same in both populations 

and also that the same governing equation describes both populations. 

This discussion leads to a number of points. First, we cannot get to general claims by simple 

generalization; there is no warrant for the convenient assumption that the ATE estimated in a specific RCT 

is an invariant parameter. We need to think through the causal chain that has generated the RCT result, 

and the underlying structures that support this causal chain, whether that causal chain might operate in a 

new setting and how it would do so with different joint distributions of the causal variables; we need to 

know why and whether that why will apply elsewhere. While it is true that there exist general causal 

claims—the force of gravity, or that people respond to incentives—they use relatively abstract concepts 

and operate at a much higher level than the claims that can be reasonably inferred from a typical RCT, and 

cannot, by themselves, guarantee the outcomes that we are considering here. That transportation is far 

from automatic also tells us why (even ideal) RCTs of similar interventions can be expected to give different 

answers in different settings. Such differences do not necessarily reflect methodological failings and will 

hold across perfectly executed RCTs just as they do across observational studies.  

 Second, thoughtful pre-experimental stratification in RCTs is likely to be valuable, or failing that, 

subgroup analysis, because it can provide information that may be useful for generalization or 

transportation.  For example, Kremer and Holla (2009) note that, in their trials, school attendance is 

surprisingly sensitive to small subsidies, which they suggest is because there are a large number of students 

and parents who are on the (financial) margin between attending and not attending school; if this is indeed 

the mechanism for their results, a good variable for stratification would be the fraction of people near the 

relevant cutoff. We also need to know that the same mechanism works in any new setting where we 

consider using small subsidies to increase school attendance. 

Third, we need to be explicit about causal structure, even if that means more model building and 

more—or different—assumptions than advocates of RCTs are often comfortable with. To be clear, 

modeling causal structure does not necessarily commit us to the elaborate and often incredible 

assumptions that characterize some structural modeling in economics, but there is no escape from thinking 

about the way things work, the why as well as the what. 

Fourth, we will typically need to know more than the results of the RCT itself, for example about 

differences in social, economic, and cultural structures and about the joint distributions of causal variables, 

knowledge that will often only be available through a range of empirical strategies including observational 

studies. We will also need to be able to characterize the population to which the original RCT and its ATE 

applied because how the population is described is commonly taken to be some indication of which other 

populations the results are likely to be exportable to and which not. Many medical and psychological 

journals are explicit about this. For instance, the rules for submission recommended by the International 
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Committee of Medical Journal Editors, ICMJE (2015, p14) insist that article abstracts “Clearly describe the 

selection of observational or experimental participants (healthy individuals or patients, including controls), 

including eligibility and exclusion criteria and a description of the source population.” The problems of 

characterizing the population here goes beyond those we faced in considering a LATE. An RCT is conducted 

on a population of specific individuals. The results obtained, whether we think in terms of an ATE or in 

terms of establishing causality, are features of that population, of those very individuals at that very time, 

not any other population with any different individuals that might, for example, satisfy one of the infinite 

set of descriptions that the trial population satisfies. How is the description of the population that is used in 

reporting the results to be chosen? For choose we must—the alternative to describing is naming, 

identifying each individual in the study by name, which is cumbersome and unhelpful and often unethical.   

This same issue is confronted already in study design. Apart from special cases, like post hoc 

evaluation for payment-for-results, we are not especially concerned to learn about the very population 

enrolled in the trial. Most experiments are, and should be, conducted with an eye to what the results can 

help us learn about other populations. This cannot be done without significant substantial assumptions 

about what might be and what might not be relevant to the production of the outcome studied. (For 

example, the ICMJE guidelines go on to say: “Because the relevance of such variables as age, sex, or 

ethnicity is not always known at the time of study design, researchers should aim for inclusion of 

representative populations into all study types and at a minimum provide descriptive data for these and 

other relevant demographic variables,” p14.) So both intelligent study design and responsible reporting of 

study results involve substantial background assumptions. Of course this is true for all studies, not just 

RCTs. But RCTs require special conditions if they are to be conducted at all and especially if they are to be 

conducted successfully—local agreements, compliant subjects, affordable administrators, people 

competent to measure and record outcomes reliably, a setting where random allocation is morally and 

politically acceptable, etc., whereas observational data are often more readily and widely available. In the 

case of RCTs, there is danger that these kinds of considerations have too much effect. This is especially 

worrisome where the features the study population should have are not justified, made explicit, or 

subjected to serious critical review.  This careful description of the study population is uncommon in 

economics, whether in RCTs or many observational studies.  

The need for observational knowledge is one of many reasons why it is counter-productive to insist 

that RCTs are the unique gold standard, or that some categories of evidence should be prioritized over 

others; these strategies leave us helpless in using RCTs beyond their original context. The results of RCTs 

must be integrated with other knowledge, including the practical wisdom of policymakers, if they are to be 

useable outside the context in which they were constructed. Contrary to much practice in medicine as well 

as in economics, conflicts between RCTs and observational results need to be explained, for example by 
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reference to the different populations in each, a process that will sometimes yield important evidence, 

including on the range of applicability of the RCT itself. While the validity of the RCT will sometimes provide 

an understanding of why the observational study found a different answer, there is no basis (or excuse) for 

the common practice of dismissing the observational study simply because it was not an RCT and therefore 

must be invalid. It is a basic tenet of scientific advance that new findings must be able to explain previous 

results, even results that are now thought to be invalid; methodological prejudice is not an explanation.  

These considerations can be seen in practice in the range of randomized controlled trials in 

economics, which we shall explore in the final subsection below.  

 

2.5 Using theory for generalization 

 

Economists have been combining theory and randomized controlled trials since the early experiments. 

Orcutt and Orcutt (1968) laid out the inspiration for the income tax trials using a simple, static theory of 

labor supply. According to this, people choose how to divide their time between work and leisure in an 

environment in which they receive a minimum G if they do not work, and where they receive an additional 

amount (1- t)w  for each hour they work, where w is the wage rate, and t is a tax rate. The trials assigned 

different combinations of G and t to different trial groups, so that the results traced out the labor supply 

function, allowing estimation of the parameters of preferences, which could then be used in a wide range 

of policy calculations, for example to raise revenue at minimum utility loss to workers.  

 Following these early trials, there has been a long and continuing tradition of using trial results, 

together with the baseline data collected for the trial, to fit structural models that are to be used more 

generally. Early examples include Moffitt (1979) on labor supply and Wise (1985) on housing; more recent 

examples are Heckman, Pinto and Savelyev (2013) for the Perry pre-school program. Development 

economics examples include Attanasio, Meghir and Santiago (2012), Attanasio et al (2015), Todd and 

Wolpin (2006) and Duflo, Hanna and Ryan (2012).  These structural models sometimes require formidable 

auxiliary assumptions on functional forms or the distributions of unobservables, which makes many 

economists reluctant to embrace them, but they have compensating advantages, including the ability to 

integrate theory and evidence, to make out-of-sample predictions, and to analyze welfare—which always 

requires some understanding of why things happen—and the use of RCT evidence allows the relaxation of 

at least some of the assumptions that are needed for identification. In this way, the structural models 

borrow credibility from the RCTs and in return help set the RCT results within a coherent framework. 

Without some such interpretation, the welfare implications of RCT results can be problematic; knowing 

how people in general (let alone just people in the trial population, which is what, as we keep repeating, 
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the trial results tell us about) respond to some policy is rarely enough to tell whether or not they are made 

better off. What works is not equivalent to what should be. 

 In many papers, Heckman has developed ways to model how the beliefs and interests of 

participants affect their participation in, behavior during, and their outcomes in trials, for example using a 

Roy model of choice; see e.g. Heckman and Smith (1995), and more recently Chassang, Padró I Miguel, and 

Snowberg (2012) and Chassang et al (2015). The modeling of beliefs and behavior allows predictions about 

the results of trials that differ from the base trial, or where the risk and reward structures are different. 

Beyond that, and in line with a running theme of this Section, thinking about how to handle new situations 

can be incorporated into the design of the original trial so as to provide the information needed for 

transportation. 

 Light touch theory can do much to extend and to use RCT results. In both the RAND Health 

Experiment and negative income tax experiments, an immediate issue concerned the difference between 

short and long-run responses; indeed, differences between immediate and ultimate effects occur in a wide 

range of RCTs. Both health and tax RCTs aimed to discover what would happen if consumers/workers were 

permanently faced with higher or lower prices/wages, but the trials could only run for a limited period. A 

temporarily high tax rate on earnings was effectively a “fire sale” on leisure, so that the experiment 

provided an opportunity to take a vacation and make up the earnings later, an incentive that would be 

absent in a permanent scheme. How do we get from the short-run responses that come from the trial to 

the long-run responses that we want to know? Metcalf (1973) and Ashenfelter (1978) provided answers for 

the income tax experiments, as did Arrow (1975) for the Rand Health Experiment.  

 Arrow’s analysis illustrates how to use both structure and observational data to transport and 

adapt results from one setting to another. He models the health experiment as a two-period model, in 

which the price of medical care is lowered in the first period only, and shows how to derive what we want, 

which is the response in the first period if prices were lowered by the same proportion in both periods. The 

magnitude that we want is S, the compensated price derivative of medical care in period 1 in the face of 

identical increases in p1
 and p2

 in both periods 1 and 2, and this is equal to s11 + s12
, the sum of the 

derivatives of period 1’s demand with respect to the two prices. The trial gives only s11
. But if we have 

post-trial data on medical services for both treatments and controls, we can infer s21
, the effect of the 

experimental price manipulation on post-experimental care. Choice theory, in the form of Slutsky 

symmetry, allows Arrow to use this to infer s12
 and thus S. He contrasts this with Metcalf’s alternative 

solution, which makes different assumptions—that two period preferences are intertemporally additive, in 

which case the long-run elasticity can be obtained from knowledge of the income elasticity of post-

experimental medical care, which would have to come from an observational analysis. These two 
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alternative approaches show how we can choose, based on our willingness to make assumptions and on 

the data we have, a suitable combination of (elementary and transparent) theoretical assumptions and 

observational data in order adapt and use the trial results. Such analysis can also help design the original 

trial by clarifying what we need to know in order to be able to use the results of a temporary treatment to 

estimate the permanent effects that we need. Ashenfelter provides a third solution, noting that the two 

period model is formally identical to a two person model, so that we can use information on two-person 

labor supply to tell us about the dynamics. 

 Theory can often allow us to reclassify new or unknown situations as analogous to situations where 

we already have background knowledge. One frequently useful way of doing this is when the new policy 

can be recast as equivalent to a change in the budget constraint that respondents face. The consequences 

of a new policy may be easier to predict if we can reduce it to equivalent changes in income and prices, 

whose effects are often well understood and well studied. Todd and Wolpin (2008) make this point and 

provide examples. In the labor supply case, an increase in the tax rate t has the same effect as a decrease in 

the wage rate w, so that we can rely on previous literature to predict what will happen when tax rates are 

changed. In the case of Mexico’s PROGRESA conditional cash transfer program, Todd and Wolpin note that 

the subsidies paid to parents if their children go to school can be thought of as a combination of reduction 

in children’s wage rates and an increase in parents’ income, which allows them to predict the results of the 

conditional cash experiment with limited additional assumptions. If this works, as it partially does in their 

analysis, the trial helps consolidate previous knowledge and contributes to an evolving body of theory and 

empirical, including trial, evidence.  

The program of thinking about policy changes as equivalent to price and income changes has a long 

history in economics; much of rational choice theory can be so interpreted, see Deaton and Muellbauer 

(1980) for many examples. When this conversion is credible, and when a trial on some apparently 

unrelated topic can be modeled as equivalent to a change in prices and incomes, and when we can assume 

that people in different settings respond relevantly similarly to changes in prices and incomes, we have a 

readymade framework for incorporating the trial results into previous knowledge, as well as for extending 

the trial results and using them elsewhere. Of course, all depends on the validity and credibility of the 

theory; people may not in fact think of a tax increase as a decrease in the price of leisure, and behavioral 

economics is full of examples where apparently equivalent stimuli generate non-equivalent outcomes. The 

embrace of behavioral economics by many of the current generation of trialists may account for their 

limited willingness to use conventional choice theory in this way; unfortunately, behavioral economics does 

not yet offer a replacement for the general framework of choice theory that is so useful in this regard. 

 Theory can also help with the problem we raised of delineating the population to which the trial 

results immediately apply and for thinking about moving from this population to the population of interest. 
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Ashenfelter’s  (1978) analysis is again a good illustration and predates much similar work in later literature. 

The income tax experiments offered participation in the trial to a random sample of the population of 

interest. Because there was no blinding and no compulsion, people who were randomized into the 

treatment group were free to choose to refuse treatment. As in many subsequent analyses, Ashenfelter 

supposes that people choose to participate if it is in their interest to do so, depending on what has become 

known in the RCT and Instrumental Variables literature as their own idiosyncratic “gain.” The simple labor 

supply model gives an approximate condition: if the treatment increases the tax rate from t0
 to t1

 with an 

offsetting increase in G, then an individual assigned to the experimental group will decline to participate if:  

 (t1 - t0 )w0h0 +
1

2
s00(t1 - t0 ) > G1 - G0

   (7) 

where subscript 1 refers to the treatment situation, 0 to the control, h0
 is hours worked, and s00

 is the 

(negative) utility-constant response of hours worked to the tax rate. If there is no substitution, the second 

term on the left-hand side is zero, and people will accept treatment if the increase in G more than makes 

up for the increases in taxes payable, the “breakeven” condition. In consequence, those with higher 

earnings are less likely to accept treatment. Some better-off people with high substitution effects will also 

accept treatment if the opportunity to buy more cheap leisure is sufficient enticement. 

 The selective acceptance of treatment limits the analyst’s ability to learn about the better-off or 

low-substitution people who decline treatment but who would have to accept it if the policy were actually 

implemented. Both the ITT estimator and the “as treated” estimator that compares the treated and the 

untreated are affected, not just by the labor supply effects that the trial is designed to induce, but by the 

kind of selection effects that randomization is designed to eliminate. Of course, the analysis that leads to 

(3) can perhaps help us say something about this and help us adjust the trial estimates back to what we 

would like to know. Yet this is no easy matter because selection depends, not only on observables, such as 

pre-experimental earnings and hours worked, but on (much harder to observe) labor supply responses that 

likely vary across individuals. Paraphrasing Ashenfelter, we cannot estimate the effects of a permanent 

compulsory negative income tax program from a transitory voluntary trial without strong assumptions or 

additional evidence.  

Much of the modern literature, for example on training programs, wrestles with the issue of exactly 

who is represented by the RCT results, see again Heckman, Lalonde and Smith (1999). When people are 

allowed to reject their randomly assigned treatment according to their own (real or perceived) individual 

advantage, we have come a long way away from the random allocation in the standard conception of a 

randomized controlled trial. Moreover, the absence of blinding is common in social and economic RCTs, 

and while there are trials, such as welfare trials, that effectively compel people to accept their assignments, 

and some where the treatment is generous enough to do so, there are trials where subjects have much 
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freedom and, in those cases, it is less than obvious to us what role, if any, randomization plays in 

warranting the results.  

 

2.6 Scaling up: using the average for populations 

 

A typical RCT, especially in the development context, is small-scale and local, for example in a few schools, 

clinics, or farms in a particular geographic, cultural, socio-economic setting. If successful according to a 

cost-effectiveness criterion, for example, it is a candidate for scaling-up, applying the same intervention for 

a much larger area, often a whole country, or sometimes even beyond, as when some treatment is 

considered for all relevant World Bank projects. The fact that the intervention might work differently at 

scale has long been noted in the economics literature, e.g. Garfinkel and Manski (1992), Heckman (1992), 

and Moffitt (1992), and is recognized in the recent review by Banerjee and Duflo (2009). We want here to 

emphasize the pervasiveness of such effects—that failure of the trial results to replicate at a larger scale is 

likely to be the rule rather than the exception—as well as to note once again that, as in failures of 

transportability, this should not be taken as an argument against using RCTs, but only against the idea that 

effects at scale are likely to be the same as in the trial. Using RCT results is not the same as assuming the 

same results holds in all circumstances. 

 An example of what are often called general equilibrium effects comes from agriculture. Suppose 

an RCT demonstrates that in the study population a new way of using fertilizer or insecticide had a 

substantial positive effect on, say, cocoa yields, so that farmers who used the new methods saw increases 

in production and in incomes compared to those in the control group. If the procedure is scaled up to the 

whole country, or to all cocoa farmers worldwide, the price will drop, and if the demand for cocoa is price 

inelastic—as is usually thought to be the case, at least in the short run—cocoa farmers’ incomes will fall. 

Indeed, the conventional wisdom for many crops is that farmers do best when the harvest is small, not 

large. Of course, these considerations might not be decisive in deciding whether or not to promote the 

innovation, and there may still be long term gains if, for example, some farmers find something better to 

do than growing cocoa. But the basic point is that the scaled-up effect in this case is opposite in sign to the 

trial effect. The problem here is not with the trial results, which can be usefully incorporated into a more 

comprehensive market model that incorporates the responses estimated by the trial. The problem is only if 

we assume that the aggregate looks like the individual. That other ingredients of the aggregate model must 

come from observational studies should not be a criticism, even for those who favor RCTs; it is simply the 

price of doing serious analysis.  

 There are many possible interventions that alter supply or demand whose effect, in aggregate, will 

change a price or a wage that is held constant in the original RCT. Education will change the supplies of 
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skilled versus unskilled labor, with implications for relative wage rates. Conditional cash transfers increase 

the demand for (and perhaps supply of) schools and clinics, which will change prices or waiting lines, or 

both. There are interactions between people that will operate only at scale. Giving one child a voucher to 

go to private school might improve her future, but doing so for everyone can decrease the quality of 

education for those children who are left in the public schools, see the contrasting studies of Angrist et al 

(1999) and Hsieh and Urquiola (2002). Educational or training programs may benefit those who are treated, 

but harm those left behind; if the control group is selected from the latter, the RCT may generate a positive 

result in spite of hurting some and helping none; Crépon et al (2014) recognize the issue and show how to 

adapt an RCT to deal with it. 

 Scaling up can also disturb the political equilibrium. An exploitative government may not allow the 

mass transfer of money from abroad to a powerless segment of the population, though it may permit a 

small-scale RCT of cash transfers. Provision of healthcare by foreign NGOs may be successful in trials, but 

have unintended negative consequences to scale because of general equilibrium effects on the supply of 

healthcare personnel, or because it disturbs the nature of the contract between the people and a 

government that is using tax revenue to provide services. In India, the government spends large sums on 

food subsidies through a system (the PDS) that is both corrupt and inefficient, with much of the grain that 

is procured failing to find its way to the intended beneficiaries. Localized RCTs on whether or not families 

are better off with cash transfers are not informative about how politicians would change the amount of 

the transfer if faced with unanticipated inflation, and at least as important, whether the government could 

cut procurement from relatively wealthy and politically powerful farmers. Without a political and general 

equilibrium analysis, it is impossible to think about the effects of replacing food subsidies with cash 

transfers, see e.g. Basu (2010). 

Even in medicine, where biological interactions between people are less common than are social 

interactions in social science, interactions can be important; infectious diseases are an example, and 

immunization programs affect the dynamics of disease transmission through herd immunity, so that the 

effects on an individual depend on how many others are vaccinated, Fine and Clarkson (1986), Manski 

(2013, p 52). The usual, if seldom correct, conception of an RCT in medicine is of a biological process—for 

example, the administration of aspirin after a heart attack—where the effect is thought to be similar across 

individuals, and where there are no interactions. Yet even here, the social and economic setting affects 

how drugs are actually used and the same issues can arise; the distinction between efficacy and 

effectiveness in clinical trials is in part recognition of the fact. 
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2.7 Drilling down: using the average for individuals 

 

Just as there are issues with scaling-up, it is not obvious how to use the results from RCTs at the level of 

individual units, even individual units that were actually (or potentially) included in the trial. A well-

conducted RCT delivers an average treatment effect for a well-defined population but, in general, that 

average does not apply to everyone. It is not true, for example, as argued in JAMA’s “Users’ guide to the 

medical literature” that “if the patient would have been enrolled in the study had she been there—that is 

she meets all of the inclusion criteria and doesn’t violate any of the exclusion criteria—there is little 

question that the results are applicable,” Guyatt et al (1994). Even more misleading are the often-heard 

statements that an RCT with an average treatment effect insignificantly different from zero has shown that 

the treatment works for no one, though such a conclusion would be better supported by a Fisher 

randomization test.  

These issues are familiar to physicians practicing evidence-based medicine whose guidelines 

require “integrating individual clinical expertise with the best available external clinical evidence from 

systematic research,” Sackett et al (1996).  Exactly what this means is unclear; physicians know much more 

about their patients than is allowed for in the ATE from the RCT (though, once again, stratification in the 

trial is likely to be helpful) and they often have intuitive expertise from long practice that they rely on to 

help them identify features in a particular patient that are likely to affect the effectiveness of a given 

treatment for that patient. But there is an odd balance being struck here. These judgments are deemed 

admissible in dealing with the individual patient, at least for discussion with the patient as possible 

considerations, but they don’t add up to evidence to be made publicly available, with the usual cautions 

about credibility, by the standards adopted by most EBM sites.  It is also true that physicians can have 

prejudices and “knowledge” that might be anything but. Clearly, there are situations where forcing 

practitioners to follow the average will do better, even for individual patients, and others where the 

opposite is true, see Kahneman and Klein (2009).  

 Whether or not averages are useful to individuals raises the same issue in social science research. 

Imagine two schools, St Joseph’s and St. Mary’s, both of which were included in an RCT of a classroom 

innovation, or at least were eligible to be so.  The innovation is successful on average, but should the 

schools adopt it? Should St Mary’s be influenced by a previous attempt in St Joseph’s that was judged a 

failure? Many would dismiss this experience as anecdotal and ask how St Joseph’s could have known that it 

was a failure without benefit of “rigorous” evidence. Yet if St Mary’s is like St Joseph’s, with a similar mix of 

pupils, a similar curriculum, and similar academic standing, might not St Joseph’s experience be more 

relevant to what might happen at St Mary’s than is the positive average from the RCT? And might it not be 

a good idea for the teachers and governors of St Mary’s to go to St Joseph’s and find out what happened 
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and why? They may be able to observe the mechanism of the failure, if such it was, and figure out whether 

the same problems would apply for them, or whether they might be able to adapt the innovation to make 

it work for them, perhaps even more successfully than the positive average in the trial.  

Once again, these questions are unlikely to be simply answered in practice; but, as with 

transportability, there is no serious alternative to trying. Assuming that the average works for you will often 

be wrong, and it will at least sometimes be possible to do better. As in the medical case, the advice to 

individual schools often lacks specificity. For example, the US Institute of Education Sciences has provided a 

“user-friendly” guide to practices supported by rigorous evidence, US Department of Education (2003). The 

advice, which is very similar to recommendations in development economics, is that the intervention be 

demonstrated effective through well-designed RCTs in more than one site of implementation, and that “the 

trials should demonstrate the intervention’s effectiveness in school settings similar to yours” (2003, p. 17). 

No operational definition of “similar” is provided.  

 We note finally that these caveats, which apply to individuals (or schools) even if they were in the 

trial, provide another reason why the concept of “external” validity is unhelpful. The real issue is how to 

use the findings of a trial in new settings, including settings included in the trial; external validity in the 

sense of invariance of the ATE emphasizes simple replication, which guarantees nothing, while ignoring the 

possibility that lack of replication can be a key to understanding. 

 

2.8 Examples and illustrations from economics 

 

Our arguments in this Section should not be controversial, yet we believe that they represent an approach 

that is different from most current practice.  To document this and to fill out the arguments, we provide 

some examples. While these are occasionally critical, our purpose is constructive; indeed, we believe that 

misunderstandings about how to use RCTs have artificially limited their usefulness, as well as alienated 

some who would otherwise use them. 

 Conditional cash transfers (CCTs) are interventions that have been tested using RCTs (and other 

RCT-like methods) and are often cited as a leading example of how an evaluation with strong internal 

validity leads to a rapid spread of the policy, e.g. Angrist and Pischke (2010) among many others. IThink 

through the causal chain that is required for CCTs to be successful: people must like money, they must like 

(or do not object too much) to their children being educated and vaccinated, there must exist schools and 

clinics that are close enough and well enough staffed to do their job, and the government or agency that is 

running the scheme must care about the wellbeing of families and their children. That such conditions hold 

in a wide range of (although certainly not all) countries makes it unsurprising that CCTs “work” in many 
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replications, though they certainly will not work in places where the schools and clinics do not exist, Levy 

(2001), nor in places where people strongly oppose education or vaccination.  

Similarly, given that the helping factors will operate with different strengths and effectiveness in 

different places, it is also not surprising that the size of the ATE differs from place to place; for example, 

Vivalt’s AidGrade website lists 29 estimates from a range of countries of the standardized (divided by local 

standard deviation of the outcome) effects of conditional cash transfers on school attendance; all but four 

show the expected positive effect, and the range runs from –8 to +38 percentage points. Even in this 

leading case, where we might reasonably conclude that CCTs “work” in getting children into school, it 

would be hard to calculate credible cost-effectiveness numbers, or to come to a general conclusion about 

whether CCTs are more or less cost effective than other possible policies. Both costs and effect sizes can be 

expected to differ in new settings, just as they have in observed ones, making these predictions difficult. 

 The range of estimates illustrates that the simple view of external validity—that the ATE should 

transport from one place to another—is not well defined. AidGrade uses standardized measures of effect 

size divided by standard deviation of outcome at baseline, as does the major multi-country study by 

Banerjee et al (2015), But we might prefer measures that have an economic interpretation, such as 

additional months of schooling per $100 spent (for example if a donor is trying to decide where to spend, 

see below). Nutrition might be measured by height, or by the log of height. Even if the ATE by one measure 

carries across, it will only do so using another measure if the relationship between the two measures is the 

same in both situations. This is exactly the sort of thing that a formal analysis of transportability forces us to 

think about.  (Note also that ATE in the original RCT can differ depending on whether the outcome is 

measured in levels or in logs; the two ATEs could even have different signs.) 

Deworming is surely more complicated than conditional cash transfers though not because anyone 

disputes the desirability of removing parasitical worms or the biological efficacy of the medicines, at least if 

they are repeatedly and effectively administered; that is the part of the causal process that is transportable 

from one place to another. Yet nutritional or school attendance outcomes depend on reinfection from one 

person to another—which depends on local customs about defecation (which vary from place to place and 

are subject to religious and cultural factors), particularly on the extent of open defecation and the density 

of population, on whether or not children wear shoes, and on the availability and use of public and private 

sanitation; this last was crucial in the elimination of hookworm in the southern states of the U.S. according 

to Stiles (1939). Temperature may also be important; indeed, such “macro” variables are likely to be 

important in a wide range of medical, employment, and production trials, Rosenzweig and Udry (2016). 

There are two prominent positive studies in the economics literature, one in Kenya, Kremer and Miguel 

(2000) and one in India, Bobonis, Miguel and Puri-Sharma (2006); these are often cited as examples of the 

power of RCTs to come up with the “right” answer, for example by Karlan and Appel (2008). Yet the 
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Cochrane Collaboration review of deworming and schooling, Taylor-Robinson et al (2015), which reviews 

one trial (from India) covering more than a million participants, and 44 others covering 67,672 participants, 

including Kremer and Miguel (2004), conclude that there is “substantial evidence” that deworming shows 

no benefit in nutritional status, hemoglobin, cognition, school performance or death. The validity of this 

meta-analysis is disputed by Croke et al (2016). A replication, Aiken et al (2015) and re-analysis (using 

different methods) of Miguel and Kremer’s original data by Davey et al (2015) concluded that the study 

“provided some evidence, but with high risk of bias,” provoking a lengthy exchange, Hicks et al (2015) and 

Hargreaves et al (2015). Most of the differences in results come from different methodological choices, 

themselves largely based on disciplinary traditions, rather from the effects of mistakes or errors. In an 

impressive and clear reanalysis, Humphreys (2015) argues that one puzzling feature of Miguel and Kremer’s 

results is the absence of any clear effect of deworming on health, as was the case in the large Indian RCT. 

Yet the effects of deworming on education, which are the main target of the paper, presumably work 

through health, so that the absence of health effects—a failure of expected mediators—is a puzzle, see also 

Miguel, Kremer and Hicks (2015), and Ahuja et al (2015). Recall too our earlier discussion of the difficulty of 

interpreting the standard errors of the original study in the absence of randomization. 

It is not our purpose here to try to adjudicate these competing claims but rather to relate this work 

to our general argument. First, it is not clear that there is a right answer to be discovered; given the causal 

chains involved, deworming might be helpful in one place but unhelpful in another. Yet the focus of the 

debate is almost entirely on internal validity, on whether the original studies were correctly done. The 

Cochrane review, in line with this, and in line with much meta-analysis of trials, seems to suppose that 

there is a single effect to be uncovered that, once established, will be invariant to local and environmental 

differences.  External validity, it seems, is implied by internal validity. Indeed, Chalmers, one of the 

founders of the Cochrane Collaboration, has explicitly argued (in response to one of us) that, in the absence 

of strong reasons to the contrary, results should be taken as applicable everywhere, Pettigrew and 

Chalmers (2011).  

Second, the debate makes it clear that the practice of RCTs in economic development has done 

little to fulfill the original promise that their simplicity—how hard is it to subtract one mean from 

another?—would dispose of the methodological and econometric disputes that characterize so many 

observational studies and were thought to be one of their main flaws. While RCTs tend to take some 

contentious issues of identification off the table, they leave much to be disputed, including the handling of 

factors that interact with treatment effects, the appropriate level of randomization, the calculation of 

standard errors, the choice of outcome measure, the inclusion criteria for the sample, placebo and 

Hawthorne effects, and much more. The claim that RCTs cut through the usual econometric disputes to 
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deliver to policymakers a simple, convincing, and easily understood answer is simply false. The deworming 

debates are perhaps the leading illustration. 

Much of the development literature, like the medical literature, works with the view of external 

validity that, unless there is evidence to the contrary, the direction and size of treatment effects can be 

transported from one place to another. The J-PAL website reports its findings under a general head of 

policy relevance, subdivided by a selection of topics. Under each topic, there is a list of relevant RCTs from 

a range of different settings around the world. These are conveniently converted into a common cost-

effectiveness measure so that, for example, under ‘education’, subhead ‘student participation’, there are 

four studies from Africa: on informing parents about the returns to education in Madagascar, on 

deworming, on school uniforms, and on merit scholarships, all from Kenya. The units of measurement are 

additional years of student education per $100, and among these four studies, the average effect sizes of 

spending $100 are 20.7 years, 13.9 years, 0.71 years and 0.27 years respectively. (Note that this is a 

different—and superior—standardization from the effect size standardization discussed above.) 

What can we conclude from such comparisons? For a philanthropic donor interested in education, 

and if marginal and average effects are the same, they might indicate that the best place to devote a 

marginal dollar is in Madagascar, where it would be used to inform parents about the value of education. 

This is certainly useful, but it is not as useful as statements that information or deworming programs are 

everywhere more cost-effective than programs involving school uniforms or scholarships, or if not 

everywhere, at least over some domain, and it is these second kinds of comparison that would genuinely 

fulfill the promise of “finding out what works.”  But such comparisons only make sense if we can transport 

the results from one place to another, if the Kenyan results also hold in Madagascar, Mali, or Namibia, or 

some other list of African or non-African places. J-PAL’s manual for cost-effectiveness, Dhaliwal et al (2012) 

explains in (entirely appropriate) detail how to handle variation in costs across sites, noting variable factors 

such as population density, prices, exchange rates, discount rates, inflation, and bulk discounts. But it gives 

short shrift to cross-site variation in the size of average treatment effects which play an equal part in the 

calculations of cost effectiveness. The manual briefly notes that diminishing returns (or the “last-mile” 

problem) might be important in theory, but argues that the baseline levels of outcomes are likely to be 

similar in the pilot and replication areas, so that the average treatment effect can be safely transported as 

is. All of this lacks a justification for transportability, some understanding of when results transport, when 

they do not, or better still, how they should be modified to make them transportable.  

One of the largest and most technically impressive of the development RCTs is by Banerjee et al 

(2015), which tests a “graduation” program designed to permanently lift extremely poor people from 

poverty by providing them with a gift of a productive asset (from guinea-pigs, (regular-) pigs, sheep, goats, 

or chickens depending on locale), training and support, life skills coaching, as well as support for 
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consumption, saving, and health services; the idea is that this package of aid can help people break out of 

poverty traps in a way that would not be possible with one intervention at a time. Comparable versions of 

the program were tested in Ethiopia, Ghana, Honduras, India, Pakistan, and Peru and, excepting Honduras 

(where the chickens died) find largely positive and persistent effects—with similar (standardized) effect 

sizes—for a range of outcomes (economic, mental and physical health, and female empowerment). One 

site apart, essentially everyone accepted their assignment, so that many of the familiar caveats do not 

apply. Replication of positive ATEs over such a wide range of places certainly provides proof of concept for 

such a scheme. Yet Bauchet, Morduch, and Ravi (2015) fail to replicate the result in South India, where the 

control group got access to much the same benefits, what Heckman, Hohman, and Smith (2000) call 

‘substitution bias’. Even so, the results are important because, although there is a longstanding interest in 

poverty traps, many economists have long been skeptical of their existence or that they could be sprung by 

such aid-based policies. In this sense, the study is an important contribution to the theory of economic 

development; it tests a theoretical proposition and will (or should) change minds about it. 

A number of difficulties remain. As the authors note, such trials cannot tell us which component of 

the treatment accounted for the results, or which might be dispensable—a much more expensive 

multifactorial trial would be required—though it seems likely in practice that the costliest component—the 

repeated visits for training and support—is likely to be the first to be cut by cash-strapped politicians or 

administrators. And as noted, it is unclear what should count as (simple) replication in international 

comparisons; it is hard to think of the uses of standardized effect sizes, except to document that effects 

exist everywhere and that they are similarly large relative to local variation in such things.   

The effect size—the average treatment effect expressed in numbers of standard deviations of the 

original outcome—though conveniently dimensionless, has little to recommend it. As with much of RCT 

practice, it strips out any economic content—no rates of return, or benefits minus costs—and it removes 

any discipline on what is being compared. Apples and oranges become immediately comparable, as do 

treatments whose inclusion in a meta-analysis is limited only by the imagination of the analysts in claiming 

similarity. In psychology, where the concept originated, there are endless disputes about what should and 

should not be pooled in a meta-analysis. Beyond that, as argued by Simpson (2016), restrictions on the trial 

sample—often good practice to reduce background noise and to help detect an effect—will reduce the 

baseline standard deviation and inflate the effect size. More generally, effect sizes are open to 

manipulation by exclusion rules. It makes no sense to claim replicability on the basis of effect sizes, let 

alone to use them to rank projects.  

The graduation study can be taken as the closest to fulfilling the “finding out what works” aim of 

the RCT movement in development. Yet it is silent on perhaps the crucial aspect for policy, which is that the 

trial was run entirely in partnership with NGOs, whereas what we would like to know is whether it could be 
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replicated by governments, including those governments that are incapable of getting doctors, nurses, and 

teachers to show up to clinics, or schools, Chaudhury et al (2005), Banerjee, Deaton and Duflo (2004), or of 

regulating the quality of medical care in either the public or private sectors, Filmer, Hammer and Pritchett 

(2000) or Das and Hammer (2005). In fact, we already know a great deal about “what works.” Vaccinations 

work, maternal and child healthcare services work, and classroom teaching works. Yet knowing this does 

not get those things done. Adding another program that works under ideal conditions is useful only where 

such conditions exist, and that would likely be unnecessary when they exist. Finding out what works is not 

the magic key to economic development. Technical knowledge, though always worth having, requires 

suitable institutions if it is to do any good.  

 A similar point is documented in the contrast between a successful trial that used cameras and 

threats of wage reductions to incentivize attendance of teachers in schools run by an NGO in Rajasthan in 

India, Duflo, Hanna, and Ryan (2012), and the subsequent failure of a follow-up program in the same state 

to tackle mass absenteeism of health workers, Banerjee, Duflo, and Glennerster (2008). In the schools, the 

cameras and timekeeping worked as intended, and teacher attendance increased. In the clinics, there was a 

short-run effect on nurse attendance, but it was quickly eliminated. (The ability of agents eventually to 

undermine policies that are initially effective is common enough and not easily handled within an RCT.) In 

both trials, there were incentives to improve attendance, and there were incentives to find a way to 

sabotage the monitoring and restore workers to their accustomed positions; the force of these incentives is 

a “high-level” cause, like gravity, or the principle of the lever, that works in much the same way 

everywhere. For the clinics, some sabotage was direct—the smashing of cameras—and some was subtler, 

when government supervisors provided official, though essentially specious reasons, for missing work. We 

can only conjecture why the causality was switched in the move from NGO to government; we suspect that 

working for a highly-respected local NGO is a different contract from working for the government, where 

not showing up for work is widely (if informally) understood to be part of the deal. The incentive lever 

works when it is wired up right, as with the NGOs, but not when the wiring cuts it out, as with the 

government. Knowing “what works” in the sense of the treatment effect on the trial population is of 

limited value without understanding the political and institutional environment in which it is set. This 

underlines the need to understand the underlying social, economic, and cultural structures—including the 

incentives and agency problems that inhibit service delivery—that are required to support the causal 

pathways that we should like to see at work. 

Trials in economic development are susceptible to the critique that they take place in artificial 

environments. Drèze (2016) notes, based on extensive experience in India, “when a foreign agency comes 

in with its heavy boots and suitcases of dollars to administer a `treatment,’ whether through a local NGO or 

government or whatever, there is a lot going on other than the treatment.” There is also the suspicion that 



Deaton and Cartwright August 2016 

54 

a treatment that works does so because of the presence of the “treators,” often from abroad, rather than 

because of the people who will be called to work it in reality.  

 There is also much to be learned from many years of economic trials in the United States, 

particularly from the work of the Manpower Demonstration Research Corporation (now known by its 

initials MDRC), from the early income tax trials, as well as from the Rand Health Experiment. Following the 

income tax trials, MDRC has run many randomized trials since the 1970s, mostly for the Federal 

government but also for individual states and for Canada, see the thorough and informative account by 

Gueron and Rolston (2011) for the factual information underlying the following discussion. MRDC’s 

program, like that of JPAL in development, is intended to find out “what works” in the state and federal 

welfare programs. These programs are conditional cash transfers in which poor recipients are given cash 

provided they satisfy certain conditions which are often the subject of the trial. Should there be work 

requirements? Should there be remedial educational before work requirements? What are the benefits 

and costs of various alternatives, both to the recipients and to the local and federal taxpayers? All of these 

programs are deeply politicized, with sharply different views over both facts and desirability. Many 

engaged in these disputes feel certain of what should be done and what its consequences will be so that, 

by their lights, control groups are unethical because they deprive some people of what the advocates 

“know” will be certain benefits. Given this, it is perhaps surprising that RCTs have become the accepted 

norm for this kind of policy evaluation in the US. 

 The reasons owe much to political institutions, as well as to the common faith that RCTs can reveal 

the truth. At the Federal level, prospective policies are vetted by the non-partisan Congressional Budget 

Office, which makes its own estimates of the budgetary implications of the program. Ideologues whose 

programs score poorly by the CBO have an incentive to support an RCT, not to convince themselves, but to 

convince their opponents; once again, RCTs are especially valuable when your opponents do not share your 

prior. And control groups are easier to put in place when there are insufficient funds to cover the whole 

population. There was also a widespread and largely uncritical belief that RCTs always give the right 

answer, at least for the budgetary implications, which, rather than the wellbeing of the recipients, were 

often the primary (and indeed sometimes the only) concern; note that all of these trials are on poor people 

by rich people who are typically more concerned with cost than with the wellbeing of the poor, Greenberg, 

Schroder and Onstott (1999). MDRCs trials could therefore be effective dispute reconciliation mechanisms 

both for those who saw the need for evidence and for those who did not (except instrumentally). Note that 

the outcome here fits with our “public health” case; what the politicians need to know is not the outcomes 

for individuals, or even how the outcomes in one state might transport to another, but the average 

budgetary cost in a specific place for each poor person treated, something that a good RCT conducted on a 
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representative sample of the target population is equipped to deliver, at least in the absence of general 

equilibrium effects, timing effects, etc. 

 These RCTs by MDRC and other contractors deserve much credit. They have demonstrated both 

the feasibility of large-scale social trials including the possibility of randomization in these settings (where 

many participants were hostile to the idea), as well as their usefulness to policymakers. They also seem to 

have changed beliefs, for example in favor of the desirability of work requirements as a condition of 

welfare, even among many of those who were originally opposed. There are also limitations; the trials 

appear to have had at best a limited influence on scientific thinking about behavior in labor markets. The 

results of similar programs have often been different across different sites, and there has to date been no 

firm understanding of why; indeed, the trials are not designed to reveal this, Moffitt (2004). Finally, and 

perhaps crucially for the potential contribution to economic science, there has been little success in 

understanding either the underlying structures or chains of causation, in spite of a determined effort from 

the very beginning to peer into the black boxes. Without such mechanisms, transportability is always in 

doubt, it is impossible for policymakers or academics to purposively improve the policies, and the 

contributions to cumulative science are severely limited.  

 The RAND health experiment, Manning et al (1975a, b), provides a different but equally instructive 

story if only because its results have permeated the academic and policy discussions about healthcare ever 

since. It was originally designed to test the question of whether more generous insurance would cause 

people to use more medical care and, if so, by how much. The incentive effects are hardly in doubt today; 

the immortality of the study comes rather from the fact that its multi-arm (response surface) design 

allowed the calculation of an elasticity for the study population, that medical expenditures decreased by –

0.1 to –0.2 percent for every percentage increase in the copayment. According to Aron-Dine, Einav, and 

Finkelstein (2013), it is this dimensionless and thus apparently transportable number that has been used 

ever since to discuss the design of healthcare policy; the elasticity has come to be treated as a universal 

constant. Ironically, they argue that the estimate cannot be replicated in recent studies, and it is even 

unclear that it is firmly based on the original evidence. This account points, once again, to the central 

importance of transportability for the usefulness and long-term usefulness of a trial. Here, the simple direct 

transportability of the result seems to have been largely illusory though, as we have argued, this does not 

mean that more complex constructions based on the results of the trial would not have done better. 

 

Conclusions  

 

RCTs are the ultimate in credible estimation of average treatment effects in the population being studied 

because they make so few assumptions about heterogeneity, causal structure, choice of variables, and 
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functional form. They are truly nonparametric. And indeed, this is sometimes just what we want, 

particularly where we have little credible prior information. RCTs are often convenient ways to introduce 

experimenter-controlled variance—if you want to see what happens, then kick it and see, twist the lion’s 

tail—but note that many experiments, including many of the most important (and Nobel Prize winning) 

experiments in economics, do not and did not use randomization, Harrison (2013), Svorencik (2015). But 

the credibility of the results, even internally, can be undermined by excessive heterogeneity in responses, 

and especially when the distribution of effects is asymmetric, where inference on means can be hazardous. 

Ironically, the price of the credibility in RCTs is that all we get are means. Yet, in the presence of outliers, 

means themselves do not provide the basis for reliable inference. And randomization in and of itself does 

nothing unless the details are right; purposive selection into the experimental population, like purposive 

selection into and out of assignment, undermines inference in just the same way as does selection in 

observational studies. Lack of blinding, whether of participants, trialists, data collectors, or analysts, 

undermines inference by permitting factors other than the treatment to affect the outcome, akin to a 

failure of exclusion restrictions in instrumental variable analysis.  

The lack of structure can become seriously disabling when we try to use RCT results, outside of a 

few contexts, such as program evaluation, hypothesis testing, or establishing proof of concept. Beyond 

that, we are in trouble. We cannot use the results to help make predictions elsewhere without more 

structure, without more prior information, and without having some idea of what makes treatment effects 

vary from place to place, or time to time. There is no option but to commit to some causal structure if we 

are to know how to use RCT evidence elsewhere, or to use the estimates out of the original context. Simple 

generalization and simple extrapolation just do not cut the mustard. This is true of any study, experimental 

or observational. But observational studies are familiar with, and routinely work with, the sort of 

assumptions that RCTs claim to avoid, so that if the aim is to use empirical evidence, any credibility 

advantage that RCTs have in estimation is no longer operative. 

Yet once that commitment has been made, RCT evidence can be extremely useful, pinning down 

part of a structure, helping to build stronger understanding and knowledge, and helping to assess welfare 

consequences. As our examples show, this can often be done without committing to the full complexity of 

what are often thought of as structural models. Yet without the structure that allows us to place RCT 

results in context, or to understand the mechanisms behind those results, not only can we not transport 

whether “it works” elsewhere, but we cannot do the standard stuff of economics, which is to say whether 

or not the intervention is actually welfare improving, see Harrison (2014) for a vivid account that sharply 

identifies this and other issues. Without knowing why things happen and why people do things, we run the 

risk of worthless casual (“fairy story”) causal theorizing and have essentially given up on one of the central 

tasks of economics.  
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We must back away from the refusal to theorize, from the exultation in our ability to handle 

unlimited heterogeneity, and actually SAY something. Perhaps paradoxically, unless we are prepared to 

make assumptions, and to say what we know, making statements that will be incredible to some, all the 

credibility of the RCT is for naught. 

In the specific context of development that has concerned us here, RCTs have proven their worth in 

providing proofs of concept and at testing predictions that some policies must always work or can never 

work. But, as elsewhere in economics, we cannot find out why something works by simply demonstrating 

that it does work, no matter how often, which leaves us uninformed as to whether the policy should be 

implemented. Beyond that, small scale, demonstration RCTs are not capable of telling us what would 

happen if these policies were implemented to scale, of capturing unintended consequences that typically 

cannot be included in the protocols, or of modeling what will happen if schemes are implemented by 

governments, whose motives and operating principles are different from the NGOs who typically run trials. 

While it is true that abstract knowledge is always likely to be beneficial to economic development, 

successful development depends on institutions and on politics, matters on which RCTs have little to say. In 

the end, RCTs are one of the many external technical fixes that have meandered off and on the 

development stage since the Second World War, including building infrastructure, getting prices right, and 

service delivery, none of which have faced up to the essential domestic political foundations for 

development. 
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